

Recent Improvements in Tk 9

by

Csaba Nemethi

csaba.nemethi@t-online.de

Contents

1. Abstract

2. Improved Look of Several Ttk Widgets

3. Focus Ring Support for Ttk Widgets

4. Non-default ttk::notebook Tab Positions

5. Support for the New <TouchpadScroll> Event

1. Abstract

This talk is about the progress achieved in the last few months regarding Tk 9:

 The improved look of several Ttk widgets in the built-in themes default, alt, clam, and

classic;

 Focus ring support for the widgets ttk::entry, ttk::spinbox, and ttk::combobox;

 Support for non-default ttk::notebook tab positions;

 Support for the new <TouchpadScroll> event on Windows and macOS Aqua.

2. Improved Look of Several Ttk Widgets

Improvements related to the arrows in Ttk widgets of the themes default, alt,

clam, and classic:

 default and alt themes: The arrow boxes of the ttk::combobox and ttk::spinbox widgets

now have a visible left border; the arrow within the ttk::combobox widget is now vertically

centered; the arrow boxes of the ttk::scrollbar widget are now square-shaped.

 clam theme: The arrow boxes of the ttk::spinbox widget now have optimal dimensions, due

to which the widget is no longer higher than needed and its arrows are no longer tiny; the

arrrows of the ttk::scrollbar widget are now horizontally centered.

mailto:csaba.nemethi@t-online.de

 classic theme: Replaced the ugly arrow boxes of the ttk::combobox and ttk::spinbox

widgets with new ones, which are imported from the default theme (thanks to Emiliano

Gavilan):

ttk::style element create Combobox.downarrow from default

ttk::style element create Spinbox.uparrow from default

ttk::style element create Spinbox.downarrow from default

Further improvements:

 default theme: Added a highlighting to the selected ttk::notebook tab; replaced the

ttk::menubutton indicator with a more modern one, like in the alt and clam themes; the

ttk::scale and ttk::progressbar widgets now have a nice modern look; changed the value of

the -selectborderwidth style configuration option from 1 to 0.

 classic theme: Changed the value of the -borderwidth and

-troughborderwidth style configuration options from 2 to 1 and that of the

-selectborderwidth option from 1 to 0; changed the default width of the ttk::scrollbar

widget from 11.25p to 9p (15 px to 12 px on an unscaled screen); changed the value of

the -troughcolor style configuration option from "#c3c3c3" to "#b3b3b3" (thanks

to Emiliano Gavilan).

A few screenshots (Tk 8.6.14 vs Tk 9):

3. Focus Ring Support for Ttk Widgets

The implementation of the focus ring around some Ttk widgets is theme-specific:

 default and alt themes: Extended the implementation of the field element to support

the new -focuswidth and -focuscolor options, whose values for the ttk::entry,

ttk::combobox, and ttk::spinbox widgets are set at script level as follows:

ttk::style configure TEntry -focuswidth 2 -focuscolor $colors(-selectbg)

ttk::style configure TCombobox -focuswidth 1 -focuscolor $colors(-selectbg)

ttk::style configure TSpinbox -focuswidth 1 -focuscolor $colors(-selectbg)

 clam theme: The focus ring around the ttk::entry, ttk::combobox, and ttk::spinbox widgets

is drawn by using different values for the already existing field element options

-bordercolor and -lightcolor. The last two lines below were aded in Tk 9:

ttk::style map TEntry -bordercolor [list focus $colors(-selectbg)] \

 -lightcolor [list focus #6f9dc6]

ttk::style map TCombobox -bordercolor [list focus $colors(-selectbg)]

ttk::style map TSpinbox -bordercolor [list focus $colors(-selectbg)]

 classic theme: The focus ring is actually the highlight element, which has always

been the outermost element of the themes TButton, TCheckbutton, TRadiobutton,

TMenubutton, and TEntry. In Tk 9 it was added as outermost element to the following

further layouts: TCombobox, TSpinbox, Horizontal.TScale, Vertical.TScale,

and Treeview (thanks to Emiliano Gavilan).

4. Non-default ttk::notebook Tab Positions

Extended the C code to properly support not only the default value nw of the TNotebook style

configuration option -tabposition, but also other values, like sw, wn, and en.

The Ttk library files altTheme.tcl, clamTheme.tcl, vistaTheme.tcl, xpTheme.tcl,

and winTheme.tcl contain the settings for the styles TNotebook and TNotebook.Tab,

corresponding to the default tab position nw:

ttk::style theme setting alt {

 ttk::style configure TNotebook -tabmargins {1.5p 1.5p 0.75p 0}

 ttk::style map TNotebook.Tab -expand {selected {1.5p 1.5p 0.75p 0}}

}

ttk::style theme setting clam {

 ttk::style configure TNotebook.Tab -padding {4.5p 1.5p 4.5p 1.5p}

 ttk::style map TNotebook.Tab -padding {selected {4.5p 3p 4.5p 1.5p}}

}

ttk::style theme setting vista|xpnative {

 ttk::style configure TNotebook -tabmargins {2 2 2 0}

 ttk::style map TNotebook.Tab -expand {selected {2 2 2 2}}

}

ttk::style theme setting winnative {

 ttk::style configure TNotebook -tabmargins {2 2 2 0}

 ttk::style map TNotebook.Tab -expand {selected {2 2 2 0}}

}

For a non-default tab position the extended C code assumes that accordingly modified settings are

provided, like in the following example:

set themeList [ttk::style theme names]

Tab position sw

set nbStyle SW.TNotebook

ttk::style configure $nbStyle -tabposition sw

ttk::style theme setting alt {

 ttk::style configure $nbStyle -tabmargins {1.5p 0 0.75p 1.5p}

 ttk::style map $nbStyle.Tab -expand {selected {1.5p 0 0.75p 1.5p}}

}

ttk::style theme setting clam {

 ttk::style configure $nbStyle.Tab -padding {4.5p 1.5p 4.5p 1.5p}

 ttk::style map $nbStyle.Tab -padding {selected {4.5p 1.5p 4.5p 3p }}

}

foreach theme {vista xpnative} {

 if {$theme in $themeList} {

 ttk::style theme setting $theme {

 ttk::style configure $nbStyle -tabmargins {2 0 2 2}

 ttk::style map $nbStyle.Tab -expand {selected {2 2 2 2}}

 }

 }

}

if {"winnative" in $themeList} {

 ttk::style theme setting winnative {

 ttk::style configure $nbStyle -tabmargins {2 0 2 2}

 ttk::style map $nbStyle.Tab -expand {selected {2 0 2 2}}

 }

}

ttk::notebook .nbSW -style $nbStyle

...

A few screenshots:

5. Support for the New <TouchpadScroll> Event

Adding a new <TouchpadScroll> event to Tk was proposed and implemented in November

2023 by Marc Culler (see TIP 684).

Background: According to TIP 563 by Harald Oehlmann (back in 2020), when the mouse pointer

is over a horizontal or vertical scrollbar, the mouse wheel scrolls the connected widget, regardless of

whether the Shift key is down or not. That is, both the <MouseWheel> and

<Shift-MouseWheel> events sent to a scrollbar would result in scrolling the connected widget

in the direction given by the scrollbar's -orient option. Since two-finger touchpad scroll gestures

almost always gave rise to both of these events, they resulted in annoying interferences, experienced

especially during slow scrollings, as reported by Nicolas Bats.

To solve this problem, two-finger touchpad scroll gestures on Windows and macOS Aqua no

longer generate <MouseWheel> and <Shift-MouseWheel> events, but they send

<TouchpadScroll> events instead. These events store two 16 bit delta values in the integer

provided by the %D substitution. These values can be unpacked by using the

tk::PreciseScrollDeltas utility procedure, like in the following example:

lassign [tk::PreciseScrollDeltas %D] deltaX deltaY

The binding scripts for scrollbar widgets (see the Tk library file scrlbar.tcl) simply ignore the

value of deltaY for a horizontal scrollbar and that of deltaX for a vertical one, thus eliminating

any potential interferences.

The serial field of a <TouchpadScroll> event, accessible as the %# substitution, holds a

counter which is incremented each time a <TouchpadScroll> event is generated (which happens

about 60 times per second during a two-finger gesture). This allows a binding script to, for example,

only respond to every 5th <TouchpadScroll> event by testing if the counter is divisible by 5.

On X11 there is currently no support for the <TouchpadScroll> event, two-finger touchpad

scroll gestures continue to generate <MouseWheel> and <Shift-MouseWheel> events. To

minimize the number of undesirable artifacts, the improved binding scripts for scrollbar widgets

count both the <MouseWheel> and <Shift-MouseWheel> events and ignore the non-dominant

ones.

Example of an extended event handling that supports both the mouse wheel and the two-finger

gestures (see the Tk library file listbox.tcl):

bind Listbox <MouseWheel> {

 tk::MouseWheel %W y %D -40.0 units

}

bind Listbox <Option-MouseWheel> {

 tk::MouseWheel %W y %D -12.0 units

}

bind Listbox <Shift-MouseWheel> {

 tk::MouseWheel %W x %D -40.0 units

}

bind Listbox <Shift-Option-MouseWheel> {

 tk::MouseWheel %W x %D -12.0 units

}

bind Listbox <TouchpadScroll> {

 if {%# %% 5 != 0} {

 return

 }

 lassign [tk::PreciseScrollDeltas %D] deltaX deltaY

 if {$deltaX != 0} {

 %W xview scroll [expr {-$deltaX}] units

 }

 if {$deltaY != 0} {

 %W yview scroll [expr {-$deltaY}] units

 }

}

Libraries known to support the <TouchpadScroll> event: Mentry 4.0+, Scrollutil 2.0+,

Tablelist 7.0+.

