
Tcl in Jupyter

Achievements and to-dos
Stefan Sobernig

On Jupyter (1)
Jupyter is a widely used interactive literate-programming environment (Data

Science, and beyond).

A Jupyter *notebook* is both an interactive, literate-programming document and,

when integrated with a "kernel", an application that executes the document.

The notebook format uses JSON to store all of its contents in “.ipynb” files.

A notebook is composed of cells, which can be of three types: code, Markdown, and

raw. A code cell contains executable code used to produce results.

By default, Jupyter displays text, images (PNG, JPG, and SVG), *HTML with

JavaScript*, and Markdown; extensions may add to these display types.

On Jupyter (2)
A Jupyter *kernel* executes code cells in a REPL manner.

During the execution of a cell, the kernel communicates with Jupyter to display

intermediate and final results.

Notebooks are just one example of possible *frontends* to a Jupyter kernel; others

include console applications, any HTTP or WebSocket clients, etc.

Multiple frontends may be connected to the same kernel (e.g. a console and a

notebook)!

All credits go to Mark Janssen!
Visit https://github.com/mpcjanssen/tcljupyter

https://github.com/mpcjanssen/tcljupyter

tcljupyter kernel

shell iopub controlhb stdin

kernel proxy

shell iopub
kernel proxy

shell iopub

frontend
console

frontend
notebook

Connectors and message types
Kernel and frontends communicate via five different connectors () which
realise the :

shell implements the main REPL behaviour via action requests/replies between

one or more frontends and a given kernel (message types: execute, introspection,

completion, history, kernel info)

iopub: side effects are broadcasted from the kernel to one or more frontends

(message types: streams for stderr and stdout, displays carry data for rendering/

visualisation in the frontend)

control allows for controlling the kernel without interfering with shell actions

(message types: shutdown, restart, debugging)

stdin kernel can request user-provided input data from the frontend

h(eart)b(eat) allows for frontends and kernels to signal their liveliness to each

other;

ZeroMQ sockets
Jupyter kernel messaging protocol

https://zeromq.org/socket-api/
https://jupyter-client.readthedocs.io/en/stable/messaging.html

Overview of component interactions
... using a sequence diagramPlantUML

https://plantuml.com/sequence-diagram

Overview of component interactions
... using a sequence diagramPlantUML

In [140]: set seqDiagram {
 participant "Frontend" as FR
 participant "Kernel" as K
 participant "Session\nThread" as ST
 participant "Session\nInterp" as SI

 FR --> K : execute_request (via shell)
 K --> ST: handle_msg
 ST -> SI: eval
 activate SI
 SI --> ST: display
 ST --> K: display
 K --> FR: display (via iopub)
 SI -> ST: result
 deactivate SI
 ST --> K: result
 FR <-- K : execute_reply (via shell)
};

https://plantuml.com/sequence-diagram

Frontend

Frontend

Kernel

Kernel

Session
Thread

Session
Thread

Session
In te rp

Session
In te rp

execute_request (via shell)

handle_msg

eval

display

display

display (via iopub)

result

result

execute_reply (via shell)

In [141]: plantuml $seqDiagram

Noteworthy Tcl features used
Runs a child (potentially, a safe or restricted interp)

hosted by a Tcl "userland" thread via .

"Dealer" thread and "session" thread communicate via .

Standard I/O from code cells (stdout, stderr) is indirected using .

Tcl packages used
 for marshalling/ unmarshalling

tcllib: and (for message signing)

 to maintain the session thread

 as a Tcl binding to ZeroMQ

interp

thread::create

thread::send -async

channel transforms

rl_json

uuid sha256

Thread

tclzmq

https://www.tcl.tk/man/tcl/TclCmd/interp.html#M30
https://www.tcl.tk/man/tcl/ThreadCmd/thread.html
https://www.tcl.tk/man/tcl/ThreadCmd/thread.html#M17
https://www.tcl.tk/man/tcl/TclCmd/transchan.html
http://127.0.0.1:8000/tcljupyter-eurotcl-oacs-2023.slides.html?print-pdf
http://127.0.0.1:8000/tcljupyter-eurotcl-oacs-2023.slides.html?print-pdf
http://127.0.0.1:8000/tcljupyter-eurotcl-oacs-2023.slides.html?print-pdf
http://127.0.0.1:8000/tcljupyter-eurotcl-oacs-2023.slides.html?print-pdf
http://127.0.0.1:8000/tcljupyter-eurotcl-oacs-2023.slides.html?print-pdf

Display Data
Send back data computed by the code cells within the kernel to become displayed

in the frontends (text, html, svg, etc.).

An own message type at the messaging level (display_data that travels via the

iopub connector).

tcljupyter offers dedicated commands available to Tcl scripts in code cells to

send display data to the frontend:

jupyter::html

jupyter::updatehtml

jupyter::update

Display Data
Send back data computed by the code cells within the kernel to become displayed

in the frontends (text, html, svg, etc.).

An own message type at the messaging level (display_data that travels via the

iopub connector).

tcljupyter offers dedicated commands available to Tcl scripts in code cells to

send display data to the frontend:

jupyter::html

jupyter::updatehtml

jupyter::update

Say, Tcl 9 is out!

In [142]: set displayId [jupyter::html {Say, Tcl 9 is out!}];

Display Data
Send back data computed by the code cells within the kernel to become displayed

in the frontends (text, html, svg, etc.).

An own message type at the messaging level (display_data that travels via the

iopub connector).

tcljupyter offers dedicated commands available to Tcl scripts in code cells to

send display data to the frontend:

jupyter::html

jupyter::updatehtml

jupyter::update

Say, Tcl 9 is out!

In [142]: set displayId [jupyter::html {Say, Tcl 9 is out!}];

In [143]: jupyter::updatehtml $displayId {<s>Say, Tcl 9 is out!</s>};

Tcl � is around the corner!

In [144]: set displayId [jupyter::html {
 Tcl � is around the corner!
 }];

after 2000 [list jupyter::updatehtml $displayId {
 Tcl � is around the corner!
 }];

Integrating ticklecharts via Display Data
See https://github.com/nico-robert/ticklecharts

In [145]: package req ticklecharts

Out[145]: 3.1.5

https://github.com/nico-robert/ticklecharts

Example 1: Conference stats

Example 1: Conference stats
In [147]: set chart [ticklecharts::chart new]

$chart SetOptions -tooltip {
 show "True" trigger "axis"
 axisPointer {type "shadow"}
 } \
 -legend {} \
 -grid {
 left "3%" right "4%"
 bottom "3%" containLabel "True"}

$chart Xaxis -data {{2022 2023}}
$chart Yaxis

$chart Add "barSeries" -name "Participants" \
 -data {{35 49}} \
 -emphasis {focus "series"}

$chart Add "barSeries" -name "Talks" \
 -data {{19 21}} \
 -emphasis {focus "series"}

0

10

20

30

40

50

2022 2023

Participants Talks

In [148]: $chart RenderJupyter -renderer svg

Example 2: OpenACS diff stats

Example 2: OpenACS diff stats
In [149]: set chart2 [ticklecharts::chart new]

$chart2 Xaxis -data [list {"5.9.0" "5.9.1" "5.10.0" "5.10.1"}]
$chart2 Yaxis

$chart2 Add "lineSeries" \
 -data {{3658 3548 3445 2886}} \
 -areaStyle {}

$chart2 Add "lineSeries" \
 -data {{120800 113292 215464 197060}} \
 -areaStyle {}

$chart2 Add "lineSeries" -data {{97617 90507 193642 181613}} \
 -areaStyle {}

0

50,000

100,000

150,000

200,000

250,000

5.9.0 5.9.1 5.10.0 5.10.1

In [150]: $chart2 RenderJupyter -renderer svg

Alternative environments & kernels
Christian Werner's Taygete Scrap Book (TSB): Tcl-based interactive, literate

programming environment based on a webview frontend;

Alternative Jupyter kernel: Is built using a Python which reuses Tcl

interp hosted by Python's Tkinter

RStudio Rmarkdown notebooks: No Tcl integration so far (would require a knitr

language engine, for instance)

"wrapper kernel"

http://127.0.0.1:8000/tcljupyter-eurotcl-oacs-2023.slides.html?print-pdf

Roadmap:
Messaging infrastructure: Re-use or re-build?

Update tclzmq ?

Complete tcljupyters pure-socket implementation (mind the ZeroMQ

socket semantics)?

Use a thin wrapper kernel in Python to host a tcljupyter

backend?

Complete support for all message types (i.e., kernel functions)

Deployment:

Distribution via a single executable (kit) for the main platforms plus self-

installer?

How to deal with "wrapper kernel" in Python?

Batteries (tcllib, ticklecharts, tDOM, ...)

Tests (jupyter_kernel_test) + documentation (along the way);

Summing up
Tcl in Jupyter ...

contributes to the overall community goal to "making it easier for people to get and

try Tcl" (Steve Landers);

makes Tcl and its eco-system accessible to a non-Tcl audience;

helps Tclers join the mainstream of interactive, literate programming environments;

immediately useful to Tclers for the sake of Tcling:

to demonstrate your Tcl programs;

to create interactive presentations ();

to create interactive documentation (e.g., Arjen's Jupyter port of the Tcl

tutorial)

as an interactive development environment

🤔 YOUR IDEAS? 🤷

RISE

https://rise.readthedocs.io/en/stable/

Kudos 👏 to Tcl community members
👉👉👉 Mark Janssen for 👈👈👈

Nico Robert for

Jos Decoster for

tcljupyter

ticklecharts

tclzmq

https://github.com/mpcjanssen/tcljupyter
https://github.com/nico-robert/ticklecharts
https://github.com/nico-robert/ticklecharts

References
Pimentel et al. (2021): Understanding and improving the quality and reproducibility

of Jupyter notebooks. Empir. Softw. Eng. 26(4): 65 (2021)

