Icl in Jupyter
Jupyier
‘\/

Achievements and to-dos

Stefan Sobernig

On Jupyter (1)

Jupyter is a widely used interactive literate-programming environment (Data
Science, and beyond).

A Jupyter *notebook* is both an interactive, literate-programming document and,
when integrated with a "kernel", an application that executes the document.

The notebook format uses JSON to store all of its contents in “.ipynb” files.

A notebook is composed of cells, which can be of three types: code, Markdown, and
raw. A code cell contains executable code used to produce results.

By default, Jupyter displays text, images (PNG, JPG, and SVG), *HTML with
JavaScript* and Markdown; extensions may add to these display types.

On Jupyter (2)

e A Jupyter *kernel* executes code cells in a REPL manner.

e During the execution of a cell, the kernel communicates with Jupyter to display
intermediate and final results.

» Notebooks are just one example of possible *frontends* to a Jupyter kernel; others
include console applications, any HTTP or WebSocket clients, etc.

* Multiple frontends may be connected to the same kernel (e.g. a console and a
notebook)!

All credits go to Mark Janssenl!
Visit https://github.com/mpcjanssen/tcljupyter

& C O 8 https://github.com/mpcjanssen

= o mpcjanssen

[J overview [Repositories 123 f8 Projects @ Packages Y¢ Stars 25 Q Sponsoring

Pinned

B tcljupyter | Public
Tcl kernel for Jupyter

@ Jupyter Notebook Y5 Y1

25 contributions in the last year

Jul Aug Sep Oct Nov

a
Mon [] []

Wed

[]
Fri

Mark Janssen
mpcjanssen - hefhim

Learn how we count contributions

Dec

Jan

Q Type
& sir
@ Kotli

Feb Mar

https://github.com/mpcjanssen/tcljupyter

frontend
console

kernel proxy

frontend
notebook

she\ll iOPl{b) [kernel proxy
N —
shell iopub
- vai
< y 3 AV
shell iopub

tcljupyter kernel

Connectors and message types

Kernel and frontends communicate via five different connectors (ZeroMQ sockets) which
realise the Jupyter kernel messaging protocol:

» *shell* implements the main REPL behaviour via action requests/replies between
one or more frontends and a given kernel (message types: execute, introspection,
completion, history, kernel info)

» *jopub*: side effects are broadcasted from the kernel to one or more frontends
(message types: streams for stderr and stdout, displays carry data for rendering/
visualisation in the frontend)

» *control* allows for controlling the kernel without interfering with shell actions
(message types: shutdown, restart, debugging)

o *stdin* kernel can request user-provided input data from the frontend

o *h(eart)b*(eat) allows for frontends and kernels to signal their liveliness to each
other;

https://zeromq.org/socket-api/
https://jupyter-client.readthedocs.io/en/stable/messaging.html

Overview of component interactions

... using a PlantUML sequence diagram

https://plantuml.com/sequence-diagram

Overview of component interactions

... using a PlantUML sequence diagram

set segDiagram {
participant "Frontend" as FR
participant "Kernel" as K
participant "Session\nThread" as ST
participant "Session\nInterp" as SI

FR --> K : execute request (via shell)
K --> ST: handle msg

ST -> SI: eval

activate SI

SI --> ST: display

ST --> K: display

K --> FR: display (via iopub)

SI -> ST: result

deactivate SI

ST --> K: result

FR <-- K : execute reply (via shell)

https://plantuml.com/sequence-diagram

plantuml $segDiagram

Session | | Session

Kernel Thread Interp

| | | |

| execute_request (via shell) | | :

e 1 | |

| | handle_msg | |

| | i > | |

: : " eval - :

| | I >

<display

<display

' display (via iopub) ‘ !

< TR : |

| l | result

I | I I

| . result | |

| \< ---------------------- | |

<.Execute_reply (via shell) | | |

| | | |
Kernel Session | | Session

Thread Interp

Noteworthy Tcl features used

e Runs a child interp (potentially, a safe or restricted interp)

* hosted by a Tcl "userland" thread via thread::create.

o "Dealer" thread and "session" thread communicate via thread::send -async.

o Standard I/O from code cells (stdout, stderr) is indirected using channel transforms.

Tcl packages used

e rl_json for marshalling/ unmarshalling

e tcllib: uuid and sha256 (for message signing)
e Thread to maintain the session thread

e tclzmq as a Tcl binding to ZeroMQ

https://www.tcl.tk/man/tcl/TclCmd/interp.html#M30
https://www.tcl.tk/man/tcl/ThreadCmd/thread.html
https://www.tcl.tk/man/tcl/ThreadCmd/thread.html#M17
https://www.tcl.tk/man/tcl/TclCmd/transchan.html
http://127.0.0.1:8000/tcljupyter-eurotcl-oacs-2023.slides.html?print-pdf
http://127.0.0.1:8000/tcljupyter-eurotcl-oacs-2023.slides.html?print-pdf
http://127.0.0.1:8000/tcljupyter-eurotcl-oacs-2023.slides.html?print-pdf
http://127.0.0.1:8000/tcljupyter-eurotcl-oacs-2023.slides.html?print-pdf
http://127.0.0.1:8000/tcljupyter-eurotcl-oacs-2023.slides.html?print-pdf

Display Data

e Send back data computed by the code cells within the kernel to become displayed
in the frontends (text, html, svg, etc.).
» An own message type at the messaging level (display data that travels via the
iopub connector).
e tcljupyter offers dedicated commands available to Tcl scripts in code cells to
send display data to the frontend:
= jupyter::html
= jupyter::updatehtml
= jupyter::update

Display Data

e Send back data computed by the code cells within the kernel to become displayed
in the frontends (text, html, svg, etc.).
» An own message type at the messaging level (display data that travels via the
iopub connector).
e tcljupyter offers dedicated commands available to Tcl scripts in code cells to
send display data to the frontend:
= jupyter::html
= jupyter::updatehtml
= jupyter::update

set displayId [jupyter::html {Say, Tcl 9 is out!}];

Sey—terS-s-eutt

Display Data

e Send back data computed by the code cells within the kernel to become displayed
in the frontends (text, html, svg, etc.).
» An own message type at the messaging level (display data that travels via the
iopub connector).
e tcljupyter offers dedicated commands available to Tcl scripts in code cells to
send display data to the frontend:
= jupyter::html
= jupyter::updatehtml
= jupyter::update

set displayId [jupyter::html {Say, Tcl 9 is out!}];
Sey—terS-s-eutt

jupyter: :updatehtml S$displayId {<s>Say, Tcl 9 is out!</s>};

set displayId [Jjupyter::html {
Tcl % is around the corner !

31

after 2000 [list jupyter::updatehtml $displayId {
Tcl ® is around the corner!

31

Tcl @ is around the corner!

Integrating ticklecharts via Display Data

See https://github.com/nico-robert/ticklecharts
package req ticklecharts

3.1.5

https://github.com/nico-robert/ticklecharts

Example 1. Conference stats

Example 1. Conference stats

set chart [ticklecharts::chart new]

Schart SetOptions -tooltip {

show "True" trigger "axis"
axisPointer {type "shadow"}

N

-legend {} \

-grid {
left "3%" right "4%"
bottom "3%" containLabel "True'"}

Schart Xaxis -data {{2022 2023}}
Schart Yaxis

Schart Add "barSeries" -name "Participants" \
-data {{35 49}} \
-emphasis {focus "series"

Schart Add "barSeries" -name "Talks" \
-data {{19 21}} \
-emphasis {focus "series'}

In 1[148]: $chart RenderJupyter -renderer svg

@ Participants () Talks

50

40

30

20

10

2022 2023

Example 2: OpenACS diff stats

Example 2: OpenACS diff stats

set chart2 [ticklecharts::chart new]

Schart2 Xaxis -data [list {"5.9.0" "5.9.1" "5.10.0" "5.10.1"}]
Schart2 Yaxis

Schart2 Add "lineSeries" \
-data {{3658 3548 3445 2886}} \
-areaStyle {}

Schart2 Add "lineSeries" \
-data {{120800 113292 215464 197060}} \
-areaStyle {}

Schart2 Add "lineSeries" -data {{97617 90507 193642 181613}} \
-areaStyle {}

In [150]: schart2 RenderJupyter -renderer svg

250,000

200,000

150,000

100,000

50,000

5.9.0 5.9.1 5.10.0 5.10.1

Alternative environments & kernels

o Christian Werner's Taygete Scrap Book (TSB): Tcl-based interactive, literate
programming environment based on a webview frontend;

o Alternative Jupyter kernel: Is built using a Python "wrapper kernel" which reuses Tcl
interp hosted by Python's Tkinter

e RStudio Rmarkdown notebooks: No Tcl integration so far (would require a knitr
language engine, for instance)

http://127.0.0.1:8000/tcljupyter-eurotcl-oacs-2023.slides.html?print-pdf

Roadmap:

» Messaging infrastructure: Re-use or re-build?
= Update tclzmg?
= Complete tcljupyters pure-socket implementation (mind the ZeroMQ
socket semantics)?
= Use athin wrapper kernel inPythontohosta tcljupyter
backend?
o Complete support for all message types (i.e., kernel functions)
e Deployment:
= Distribution via a single executable (kit) for the main platforms plus self-
installer?
= How to deal with "wrapper kernel" in Python?
= Batteries (tcllib, ticklecharts, tDOM, ...)
o Tests (jupyter kernel test)+ documentation (along the way);

Summing up
Tcl in Jupyter ...

o contributes to the overall community goal to "making it easier for people to get and
try Tcl" (Steve Landers);
* makes Tcl and its eco-system accessible to a non-Tcl audience;
» helps Tclers join the mainstream of interactive, literate programming environments;
» immediately useful to Tclers for the sake of Tcling:
= to demonstrate your Tcl programs;
= to create interactive presentations (RISE);
= to create interactive documentation (e.g., Arjen's Jupyter port of the Tcl
tutorial)
= 3as an interactive development environment
2 YOUR IDEAS? ¥

https://rise.readthedocs.io/en/stable/

Kudos 2 to Tcl community members

e & & & Mark Janssen for tcljupyter
¢ Nico Robert for ticklecharts
o Jos Decoster for tclzmq

https://github.com/mpcjanssen/tcljupyter
https://github.com/nico-robert/ticklecharts
https://github.com/nico-robert/ticklecharts

References

e Pimentel et al. (2021): Understanding and improving the quality and reproducibility
of Jupyter notebooks. Empir. Softw. Eng. 26(4): 65 (2021)

