
Coffee Without Java
Making an espresso machine which runs on Tcl

Slides licensed under Creative Commons by-nc-sa 3.0

Why do this?

Why make an espresso
machine?

Why have a tablet?

Making Good Espresso
is very difficult

• Lack of feedback

 and

• Lack of control

Lack of feedback

• Traditional machines tell
you temperature and
pressure

• And both are lies

Pressure
“Pump pressure”, not coffee
pressure, so always ~9 bar

Temperature
Boiler temperature is stated

Interaction effects are ignored

Latency is high

Before “semi-automatic”

There were “Lever” machines
with manual

control over flow
and pressure and

reporting the
real pressure on
the coffee puck

Lever machines aren’t dead
they can make
extraordinarily
good coffee

but they do
require skill to

use

So we made this

And discovered…

that dynamic control over
water temperature,

pressure and  
flow would be very nice.

Which led to this

Embedded or ioT?

Limited functionality limited reliability

Embedded ioT

Depreciates
with time

An Investment: in time
may become more

valuable or zero-value

and include a pre-configured
tablet for best of both worlds

Non-integrated tablet
for upgradeability

Tk oriented toward windowing UI

I made my own full-screen
UI manager

To manage the complexity of what to show/hide
and to use image caching for speed.

Skins are just PNGs

Created as movies in
Photoshop

Using “tap zones” and some
homemade graphical widgets

There’s never been an espresso
UI, so I try many ideas

There were no models to
follow, and people could not
express what they wanted

A “skin” definition language
based on Tcl

add_de1_page "espresso" "espresso_2.png"

add_de1_page “espresso_zoomed
 espresso_zoomed_temperature”
 "espresso_2_zoomed.png"

The above code defines new pages, and
what background image is auto-displayed

Text and Variables
settings for preheating a cup

add_de1_variable "preheat_1" 1390 775 -text [translate
"START"] -font $green_button_font -fill "#2d3046" -anchor
"center" -textvariable {[start_text_if_espresso_ready]}

add_de1_text "preheat_1 preheat_2 preheat_3 preheat_4" 1390
865 -text [translate "FLUSH"] -font Helv_10 -fill "#7f879a" -
anchor "center"

add_de1_variable "preheat_2" 1390 775 -text [translate "STOP"]
-font $green_button_font -fill "#2d3046" -anchor "center" -
textvariable {[stop_text_if_espresso_stoppable]}

add_de1_variable "preheat_3 preheat_4" 1390 775 -text
[translate "RESTART"] -font $green_button_font -fill "#2d3046"
-anchor "center" -textvariable
{[restart_text_if_espresso_ready]}

Buttons are “tap zones” auto-
enabled in certain contexts

add_de1_button "preheat_1 preheat_3
preheat_4" {say [translate {pre-heat cup}]
$::settings(sound_button_in);
set ::settings(preheat_temperature) 90;
set_next_page hotwaterrinse preheat_2;
start_hot_water_rinse} 0 240 2560 1400

add_de1_button "preheat_2" {say [translate
{stop}] $::settings(sound_button_in);
set_next_page off preheat_4; start_idle} 0
240 2560 1600

Years ago, I’d made a
simple rule language for

my anti-spam.

It used a (simple for me
to parse) subset of Perl.

The simple rule
language was the most

popular feature.

Kept as simple as possible

Charts use “blt” for speed

Charting code gets fairly
complicated

Using a mix of Tk Widgets
and “fake” widgets

High density tablet UI
design is very challenging

Users make their own skins

With different UI approaches
(this one is single-screen)

Trying to get different insights

Solving different problems
(here: comparing historical espressos)

Leading to many UI choices

And many translations

Using Google Sheets to
coordinate translations

Though challenges remain

Incremental updates via https
and a SHA256 file manifest

Ready-to-run cross-platform
thanks to “undroidwish”

Binary and source downloads
https://decentespresso.com/downloads

but …

Security and sandboxing is
causing real problems on all

platforms (except Linux).

and Bluetooth
support is Android

only, for now

Current Issues
How to distribute 3rd party skins that are

quickly evolving, to less technical people?

What kind of generalized extension mechanism should
I do? (beyond skins, such as Amazon, Twitter, REST)

How to contain bugs and solve them when
people can have highly customized installs?

How to handle varying-quality patches

Strengths of this approach

Easy Tcl on-boarding
(especially with undroidwish “batteries included”)

Avoids feature bloat in the main app

Source is on the tablet:
small changes have immediate effect

Desktop development environment 
(more productive and less frustrating than debugging on a tablet)

Big next steps

An API proxy, enabling

Javascript in Browser->  
 Cloud-based App server-> 
 Android app-> 
 Bluetooth

Big next steps

Cloud based espresso data storage

Data mining
Academic use
Progress in the coffee field
Sharing of profiles
Data privacy

Big next steps

App store

- All apps free or not?
- Easy sharing of espresso profiles
- Distributed responsibility for

skins
- Possibility of bad actors

Big next steps

SNMP support
So cafes can manage
espresso machines as
if they were servers

Big next steps

iOS support
To avoid the
religion wars
about platforms

Big next steps

Linux BLE support
Because Android’s
future on Tablets is
not looking promising

Binary and source downloads
https://decentespresso.com/downloads

Thank you!

John Buckman 
john@redmood.com

Slides licensed under
Creative Commons

by-nc-sa 3.0

mailto:john@redmood.com

