
Tcl/Tk Status, 
July 2018
Donal Fellows
orcid.org/0000-0002-9091-5938



Current Releases
✱ 8.5 - Long Term Support

✱ No further releases expected except for security fixes (if needed)
✱ Expect one further capstone release when we stop support (as 

with 8.4.20)

✱ 8.6 - Main Production Release (8.6.8)
✱ Recommended for all new user code
✱ TCT permission required to target for changes

✱ Only two TIPped 8.6 changes in last year
✱ TIP 473: Allow a Defined Target Namespace in oo::copy

✱ Bug fix, but in an API
✱ TIP 477: Modernize the nmake build system

✱ Build system updates for MSVC toolchain 2



Development
✱ New TIP website

✱ Based on fossil

✱ 8.7 - Open for New Features
✱ Branch: core-8-branch
✱ Most TIPs should target this
✱ Currently in alpha (8.7a1 is out; a2 this year)

✱ 9.0 - Open for New Compatibility-Breaking Changes
✱ Branch: trunk
✱ Try not to break things gratuitously!
✱ Currently in very early alpha (pre-9.0a1)

3



The New TIP Website

✱ Fossil repository 
✱ Index page generated by a 

Tcl script

✱ More accessible to Tcl 
developers
✱ I'm no longer the bottleneck!
✱ Formatted using Markdown

✱ Searching
✱ Uses SQLite FTS, of course

✱ Client-side Filtering
✱ Basic categories

Many thanks to Mark Janssen for his 
work on this

4



New (so far) in Tcl 8.7

5



New Commands
✱ array for efficiently iterates over arrays

✱ TIP 421: A Command for Iterating Over Arrays

✱ package files describes what a package really 
depends on
✱ TIP 459: Tcl Package Introspection Improvements

✱ tcl::process adds better control over subprocesses
✱ TIP 462: Add New [::tcl::process] Ensemble for Subprocess 

Management

Driven by FlightAware bounties
6



New Capabilities
✱ Decimal literals can be prefixed with 0d (compare 0x, 0o, 0b)

✱ TIP 472: Add Support for 0d Radix Prefix to Integer Literals

✱ Use commands to generate substitutions with regsub
✱ TIP 463: Command-Driven Substitutions for regsub

✱ New unit, weekdays, for clock add
✱ TIP 444: Add "weekdays" unit in clock add

✱ Updated basic Unicode support (beyond the BMP, ʜ)
✱ TIP 389: Full support for Unicode 10.0 and later (part 1)

✱ Striding list searching, just like striding list sorting
✱ TIP 351: Add Striding Support to lsearch

7



TclOO Changes
✱ Added private methods…

✱ TIP 500: Private Methods and Variables in TclOO

✱ … and private variables
✱ TIP 500: Private Methods and Variables in TclOO

✱ Made it easier to script your own definition 
commands
✱ TIP 470: Reliable Access to OO Definition Context Object

✱ Control over objects’ namespace names in oo::copy
✱ TIP 473: Allow a Defined Target Namespace in oo::copy

8



Standard Package Changes
✱ Updates to msgcat package to give richer locale 

searching and make it work with TclOO
✱ TIP 499: Custom locale search list for msgcat
✱ TIP 490: msgcat for TclOO

✱ Updates to tcltest to allow for (optional) 
performance measurement of tests
✱ TIP 447: Execution Time Verbosity Levels in tcltest::configure

9



Rework of the Notifier
✱ Support for more modern notifiers

✱ TIP 458: Add Support for epoll() and kqueue() in the Notifier

✱ Better in several ways
✱ More efficient
✱ Support more open channels

✱ Still use old notifiers on some platforms
✱ Windows and OSX have their own
✱ Very old Unix still uses select()

10



Threading for Everyone
✱ Threaded builds are default for everyone
✱ TIP 491: Threading Support: phasing out non-threaded builds

✱ Unthreaded builds have nasty bugs when used in 
threaded processes
✱ Particularly an issue for embedding

✱ Windows and OSX already require threads
✱ Platform-specific notifiers work that way

✱ Unthreaded Tcl builds will be phased out

11



Low Level Changes
✱ Internal types are merged

✱ TIP 484: Merge 'int' and 'wideInt' Obj-type to a single 'int'

✱ Format consistencies are removed
✱ TIP 476: Scan/Printf format consistency

✱ TCP server creation is more flexible
✱ TIP 456: Extend the C API to Support Passing Options to TCP Server 

Creation

✱ Panics can use non-ASCII on Windows
✱ TIP 425: Correct use of UTF-8 in Panic Callback (Windows only)

12



Expiring Support
✱ Some things are gone because we really don’t do 

them any more
✱ TIP 503: End Tcl 8.3 Source Compatibility Support
✱ TIP 487: Stop support for Pre-XP Windows

✱ Some things are gone because they are the wrong 
idea and have been for a long time
✱ TIP 493: Cease Distribution of http 1.0
✱ TIP 345: Kill the 'identity' Encoding

13



Bubbling Under
Some features we expect to vote on:
✱ ZIP filesystem
✱ Core scripted documents

✱ Type assertions and aliasing assertions
✱ Product of tclquadcode project

✱ In-place string and binary data modification
✱ More TclOO features
✱ Import of oo::util package from tcllib

14



New (so far) in Tk 8.7

15



Widget Changes

✱ Initial help text for 
entry-derived widgets
✱ TIP 496: Display hints in ::entry 

::spinbox ::ttk::entry ::ttk::spinbox 
and ::ttk::combobox

✱ Labels for progress bars
✱ TIP 442: Display text in progressbars
✱ NB: label not visible in all styles!

16



Other New Features
✱ Snapshot a canvas as an image

✱ TIP 489: Add image widget command to the Tk canvas

✱ Tweaked introspection
✱ TIP 492: Introspection for tk busy
✱ TIP 449: text undo/redo to Return Range of Characters

✱ Some really old TIPs too
✱ TIP 166: Reading and Writing the Photo Image Alpha Channel
✱ TIP 161: Change Default for Menu's -tearoff Option to False

17



Bubbling Under
Some features we expect to vote on:
✱ SVG support for the canvas
✱ Support modern graphics

✱ RBC widgets (graph, stripchart, barchart)
✱ Multiple production widgets
✱ Needs coordination on “vector” in Tcl

18



Changes (so far) in Tcl 9.0

19



Changes in 9.0
✱ Tcl always gets double-to-string conversions right by default now

✱ TIP 488: Remove tcl_precision

✱ Long deprecated API now gone (e.g., case, old puts syntax)
✱ TIP 485: Remove Deprecated API

✱ Some C API types aren’t portable, so are removed from Tcl API
✱ TIP 422: Don't Use stdarg.h/va_list in Public API

✱ We had some horrid sort-of-documented bugs in name resolution
✱ TIP 278: Fix Variable Name Resolution Quirks

✱ Octals like 0123 are now replaced with 0o123
✱ TIP 114: Eliminate Octal Parsing of Leading Zero Integer Strings

20



Likely Future Changes
✱ 64-bit Memory Object Sizes

✱ Big Strings
✱ Long Lists
✱ Huge Hashtables
✱ Causes many small (annoying) changes at C API level

✱ Full Unicode Support
✱ Change of Tcl_UniChar size
✱ Supporting Tcl commands for normalisation, etc.

21



The tclquadcode 
Project

22

Status and Demo



Compiling Tcl… All of Tcl…
1. Discover procedures in 

package
2. Translate bytecode to 

“better bytecode”
3. Add types
4. Optimise
5. Generate native code
6. Write code to DLL
7. Load DLL to implement 

package

Script Procs

Proc Bytecode

Better Bytecode

Typed Code

Optimised Code

Machine Code

Tcl

tclquadcode

LLVM

Bytecode compile

Translate

Type inference

Optimisation

Translate and Code Issue

23



Compiling Tcl… All of Tcl…
✱ Quadcode is our better bytecode

✱ Not really bytecode; Tcl lists are easier to read

✱ Static Single Assignment form allows optimisation work
✱ Variable Liveness Analysis
✱ Cross-Procedure Analysis

✱ Type system for Tcl code
✱ Everything is a string… or a subtype of string

✱ Integer, Float, Boolean

✱ Generate native code using LLVM
✱ Slow but portable
✱ Potential for other targets…

24



Status
Currently Working

✱ Support almost all 
bytecoded procedures
✱ Prototype of coroutine support
✱ Access to arrays, global 

variables, upvar

✱ Call to Tcl interpreter for 
general commands
✱ I/O handled this way
✱ User C code handled this way
✱ Some special cases

In Progress or Planned
✱ Types to do
✱ Bignums (Tcl API needs work)
✱ Lists (types of elements)
✱ Dicts (types of elements)

✱ Bytecoded Entities to do
✱ TclOO methods
✱ Lambda terms
✱ Code outside procedures

✱ Probably will never be done

25



Live Demo!

26



✱ Stackless form and Coroutines
✱ I believe it works, but with a performance penalty
✱ Costs relate to extra memory allocations required

✱ Removing static data in the implementation
✱ Original design goal was for code that was loaded once (JIT)
✱ LLVM too slow for that to be realistic

✱ Workaround: Generate good code in a DLL (or executable?) and load it
✱ Multiple uses per process possible → keep data in interpreter or 

command clientData

✱ Making a better front-end API to the compiler
✱ Let other analysis tools use our output (nagelfar?)
✱ Let some package code also be fully compiled (vectcl?)

Current Areas of Work

27


