

Cascading Dict Args

Thomas Lang, Arri R&D

The Objective Of This Talk

My world view is changing.

Well this is no great news, because it is constantly changing ... at a moderate rate. But recently, fueled
by newer techniques that have become available in newer version of Tcl, like lambdas or coroutines,
this change has gained momentum.

During the past two years or so, some technique that I'm calling “Cascading Dict Args”, gradually took
over a major part of my attention – discovered slowly, rather than actively designed.

In this talk, I want to give a working introduction to dict args by walking through the evolution of a
small feature that might fit into my current major project. As we go along, I will also try to show how
lambdas and coroutines and stuff go hand in hand with dict args.

I will start with a simple two line loop - the kind of ad hoc throwaway code that you're constantly
experiencing if you're used to work interactively in the Tcl console.

Driven by needs that I've really been confronted with while improving my application, I will then
gradually add to the complexity of that code. I will even push that technique some further in these
examples than I'm actually doing it in my real code – just to explicate some points.

But when we reach the end …

**** SPOILER ALARM ****

... I hope you will be surprised that the code we've ended up with will, in a way, again look nearly as
simple as our initial example … but it should have become a good deal more flexible along the way.

'Dict Args' … A First Look

I've started to use dict args out of haste and laziness. I needed a simple technique to parse optional
procedure parameters, and I needed it quickly. I found that Tcl dicts offered nearly everything I
needed to do all my parameter processing within just two or three lines:

(1) Define a dictionary containing all your parameters along with their default values.
(2) Merge this dictionary with your procedure's args
(3) Maybe, 'pluck' parameters from the processed dict to move them into local variables.

There's no large library support needed to make this possible, but we can simplify dict access which
tends to be a bit clumsy (→ [o debug]), and I like list creation to have a quoted appearance (→ ').

proc myProcedure args {
 set _ [' width 100 height 100 debug no]
 set o [dict merge $_ $args]
 pluck o width height

 set area [expr {$width * $height}]
 if {[o debug]} {puts “area size is $area”}

 anotherProc {*}$o area $area
}

proc ' { args} {return $args }
proc $ {var args} {upvar $var it; dict get $it {*}$args}
proc o { args} {tailcall $ o {*}$args }
proc pluck {var args} {upvar $var it; foreach _ $args {
 uplevel 1 [' set $_ [$ it $_]; dict unset it $_ } }

111111

111111

22

33

22

33

proc myProc args {
 set _ [' width 100 height 100 debug no]
 set o [dict merge $_ $args]
 pluck o width height
 # no validation!
 set area
 if {[o debug]} {puts “area size is $area”}

 anotherProc {*}$o area $area
}

Moreeover...

These three yellow initial lines have started, slowly but steadily, to pop up everywhere in my code.

 Haste had let me defer the validation of my parameters indefinitely. Of course this meant that every
misspelled parameter would be lost and ineffective – but I still think that's halfway acceptable in the
project I'm working on.

But this also opened up a range of new possibilities which I found myself using without giving much
thought until I recognized: … oops, something had changed.

 I started to pass my processed args freely down to other procedures. Just look at what's cascaded
down to anotherProc in the above demo code: width and height have already been removed,
I'm considering these as private to myProc; if anotherProc has parameters of the same name, they
are shadowed, and anotherProc will have to use its defaults. debug is a shared parameter and
passed down unmodified. area is appended, possibly shadowing an area provided from the outside.
By moving {*}$o to the end of the call, we might decide to give an outside area precedence.

More parameters might be provided from the outside that will go directly down to anotherProc
without us needing to know. This way, our inner procs can provide directly callable features to the
outer proc and, resembling a parent class / base class relationship, this starts to form a larger whole.

But let's move on to a more concrete example...

55

55

44

44

ARRI

● German, Munich-based global supplier of motion picture film equipment
● Founded 1917 by Arnold & Richter
● Cameras:

● 1937 – “Arriflex 35” uses the first reflex mirror shutter worldwide
● 1947 – First Hollywood movie (featuring Humphrey Bogart)
● Has ARRI earned a cult following in the movie business roughly

 reminding of apple fanboys – or am I mistaken?
● 2005 – “Arriflex D-20” is Arri's first digital 35 mm camera
● 2010 – “Alexa” and “Amira”, using the “ALEV3” B & C 35mm sensors
● 2015 – The “Alexa65” reintroduces 70mm movie making digitally; >4K
● Today, movies shot with the Alexa make up a large part of the

 nominees for major movie awards worldwide
● Lighting: “SkyPanel” – fully tunable LED soft light
● Digital Intermediate:

● “ARRISCAN” – 35mm film scanner
● “ARRILASER” – Oscar awarded 35mm film recorder using

 red, green and blue solid state lasers
● Rental House – The Alexa65 has originally been designed for its exclusive use
● Medical: “ARRISCOPE” – 3D surgical microscope based on the ALEV3
● The recent discontinuation of in-house film processing proves: digital electronics

 has finally taken over – as it's been predicted for decades

Sensor Tracking
I am part of the sensor team, and we needed for our digital camera projects some means to…

● … collect and access data on our sensors, provided by all parties involved, in order to
assemble overviews and statistics showing

● which sensors hava already been bonded, at best being used in a camera,
● which sensors are still available,
● the processing steps each sensor has already passed,
● which problems have been found on each sensor that may prevent us from

applying costly processing,

● … and to do, individually for each Sensor, the kind of in-depth analysis that enables us
to rate it. We can do that by using a set of images that's been drawn from each sensor
when it was, wafer still uncut, contacted by the needles of the wafer prober.

A wafer:A wafer:

A lot:A lot:

The “quilt” or “rag rug”The “quilt” or “rag rug”

All you need to know about the application are its very beginnings, where I created:

● a grid representing the sensors on the wafers of our sensor lots

● and some commands forming a Domain Specific Language Vocabulary that made it
easy to use the console interactively for querying the databases to collect some data,
and then color the grid to give some rough overview. Whenever the mouse hovers
over the grid, more precise information will be shown in the adjacent text window.

Of course there are other features that will allow to get more detailed information about
single sensors – but this overview should be sufficient to understand the examples I'll use.

Simplicity, expressiveness of the DSL, and
suitablility for interactive console use were my
sometimes contradictory utmost design goals.

Simplicity, expressiveness of the DSL, and
suitablility for interactive console use were my
sometimes contradictory utmost design goals.

An interactive analysis, done in our DSL:An interactive analysis, done in our DSL:

And even if the current version of this window appears a little bit more complex today …

… it should still be possible to recognize the fundamental parts that I've just explained.

Some first single command examples

As a warm up, we're going to manually clear the quilt – which is just a Tk image
referenced in the $::Speckles variable), and then paint a single speckle:

But resetSpeckles will give us a better way to prepare a background for us:

The quilt is much bigger than we need it for our demo purposes, and actions like this
can be quite time consuming, so I'm limiting the iteration to a small number of lots.

Originally, my custom iteration did always go over all speckles in the quilt. I'm using a
recent change here that made it accept additional parameters (guess how?) changing
how it's iterating. You will only see the lots iteration parameter in today's example.

resetSpeckles passes these parameters transparently down to the iteration – and,
as I've hinted before, it neither knows nor checks the additional data it's carrying around.

$Speckles blank

speckle {409216 4 2 2} red

resetSpeckles lots [range 126 128]

1a

1c

1b

Our Basic Example Code

Above this background, we can execute our own algorithm to display specific information.

Our demo algorithm emphasizes sensors for which the x wafer coordinate happens to
equal the y sensor coordinate. This doesn't provide us with a really useful feature, but it
makes a good and simple demo.

Here's the simplest version of our demo code that you'll see today. We will extend that code
gradually, and every time, the new insertions will be marked with a yellow background.

For the rest of this talk, I'm going to paint that same speckles over and over again, with
hardly much change in the visible results – but I will gradually increase the complexity of
my code – and I hope you'll agree I'm doing that in a reasonable way.

eachSpeckle s lots [range 126 128] {
 if {[diex $s] == [diey $s]} {
 speckle $s black 2
 snip $s "$s is black"
} }

2

A Real Coloring Of The Quilt Will Always Be More Complex ...

The quilt is intended to show as much information about our sensors as possible. Therefore,
the relevant algorithms are usually much more complex and will need to access my databases.
But I wanted to keep my demo short and stay away from the databases.

 Some different ways to color the quilt

… But The Overall Architecture Is Always The Same.

How To Provide Visible Feedback While The Algorithm Is Running

The loop we've just written will execute atomically, making our application unresponsive
while it's running.

If we're iterating through the full quilt, the user has no clue how long he will have to wait.
Sometimes, he might even suspect the application might be caught in an infinite loop.

Of course we could add an update somewhere inside the loop - with all the potential
drawbacks of re-entering the event loop from somewhere deep down on the stack.

A new action command offers the alternative to start its subcommand as a coroutine,
giving our loop the chance to yield and restart itself using an after …

… and I've created a suspend command to interact closely with action, caring about all
the necessary suspending and restarting for us:

action resetSpeckles lots [range 126 128]

action eachSpeckle s lots [range 126 128] {
 if {[diex $s] == [diey $s]} {
 speckle $s black 2
 snip $s "$s is black"
 after 20 ;# pretend that's a complex algorithm
 suspend $s
} }

3a

3b

Putting Both Parts Together

We can only have one single active action at a time. Starting a new one will immediately
stop a currently running action.

The reasoning behind this is the same as the reasoning against multithreading.

But we can wrap our two separate actions – i.e. the preparation of the background and the
main algorithm – inside a lambda, and then start this lambda as an action.

Now we can watch while the quilt gets painted in two passes.

action apply {{} {
 resetSpeckles lots [range 126 128]
 eachSpeckle s lots [range 126 128] {
 if {[diex $s] == [diey $s]} {
 speckle $s black 2
 snip $s "$s is black"
 after 10
 }
 suspend $s
 }
}}

4

We can transform the iteration range that we're using twice into an optional argument for our
lambda – and we don't even need to care what's passing through – if we provide an args
parameter thats ready to accept random stuff and hand it down without us introspecting it.

This will only work if all participating procs agree to use a common structure – e.g. a dict

The bg parameter, which is interpreted by resetSpeckles, is routed down there fully
transparently, just like lots goes down to eachSpeckle. Our short algorithm doesn't know
about that, but from an outside perspective both, lots and bg, will behave as if they had
been original, fully intended and perfectly normal features of our algorithm from the start.

action apply {{args} {
 resetSpeckles {*}$args
 eachSpeckle s {*}$args {
 if {[diex $s] == [diey $s]} {
 speckle $s black 2
 snip $s "$s is black"
 after 10
 }
 suspend $s
 }
}} lots [range 126 128] bg cyan

Random Pass-Through Args

5

Introducing: (Cascading) Dict Args

Our code can partake in that mechanism by adding parameters of its own.

In the listing below, there are these distinctive initial code lines again that I've mentioned
earlier on the introductory slide.

Now I can add parameters specifying color and size of my speckles … and that's just what I
did in the demo code above that generated that quilt clipping on its right.

Now if, for example, resetSpeckles would also use accept a color argument of its own,
then we couldn't provide that from the outside – it is shadowed by ours. And that's ok … an
inner call can offer features, but the outer proc gets the final word about its interface.

action apply {args {

 set _ [' color black smaller 2]
 set o [dict merge $_ $args]
 pluck o color smaller

 resetSpeckles {*}$o
 eachSpeckle s {*}$o {
 if {[diex $s] == [diey $s]} {
 speckle $s $color $smaller
 snip $s "$s is $color"
 }
 suspend $s
 }
}} lots [range 126 128] color red smaller 0

6

We Can Move Dict Args Around

action apply {args {

 set _ [' color black smaller 2
]
 set o [dict merge $_ $args]
 pluck o color smaller

 resetSpeckles {*}$o
 eachSpeckle s {*}$o {
 if {[diex $s] == [diey $s]} {
 speckle $s $color $smaller
 snip $s "$s is $color"
 }
 suspend $s
 }
}} color red smaller 0 lots [range 126 128
]

Here's that last version of our code again. Now suppose...

7a

We Can Move Dict Args Around

Suppose we would like to add an optional bg parameter of our own … maybe, to paint all the
Speckles that we're not going to highlight in color. Of course, we might find a better name
instead of bg, but let us explore that name collision just for the sake of the example.

action apply {args {

 set _ [' color black smaller 2
]
 set o [dict merge $_ $args]
 pluck o color smaller

 resetSpeckles {*}$o
 eachSpeckle s {*}$o {
 if {[diex $s] == [diey $s]} {
 speckle $s $color $smaller
 snip $s "$s is $color"
 }
 suspend $s
 }
}} color red smaller 0 lots [range 126 128
]

7a

We Can Move Dict Args Around

Suppose we would like to add an optional bg parameter of our own … maybe, to paint all the
Speckles that we're not going to highlight in color. Of course, we might find a better name
instead of bg, but let us explore that name collision just for the sake of the example.

If we don't pluck that parameter, it won't be there as a variable – but I've created the o
command to provide easy access to it. In this case, it will also go down to resetSpeckles.
If this was intended, everything is fine. A Dict Arg can be shared like this – see the lots arg.

If we don't know how bg is used down the cascade, its better to pluck it (purple insertions, red
removals). No bg will cascade down … this effectively hides it, and the default will be used.

If we continue to insist on our own bg, but also want to supply another one to resetSpeckles,
we might push in a replacement like it's shown in the green insertions. But note … the way we're
doing that, we're also overriding resetSpeckles' default. Think carefully before doing it that way!

action apply {args {

 set _ [' color black smaller 2 \
 bg blue mainBg gray]
 set o [dict merge $_ $args]
 pluck o color smaller bg mainBg

 resetSpeckles {*}$o bg $mainBg
 eachSpeckle s {*}$o {
 if {[diex $s] == [diey $s]} {
 speckle $s $color $smaller
 snip $s "$s is $color"
 } else {speckle $s [o $bg]}
 suspend $s ;# [o bg] ↔ $bg
 }
}} color red smaller 0 lots [range 126 128
] bg green1 mainBg white

(1) don't pluck it

(2) pluck it

(3) pass down a replacement

(7d)

How To Make Parts Of Our Algorithm Pluggable

BTW

We're not limited to the classical value based type of parameters. We can, just as easily, go even
further and make parts of our algorithm pluggable.

In the example below, speckle is no longer a command for us but rather: a dict arg containing a
partial command. The default value for this parameter is, of course, “speckle“ to ensure my
algorithm will in the default case behave like it did before (this explains the strange repetition below).

I've used that to separately measure the times consumed by the actual drawing and by the
algorithm that decides what to draw – I'll demonstrate that on the following slide.

BTW … I've switched from lambda to proc now, in order to keep the following demos shorter.

proc demoSpeckles8 args {

 set _ [' color black smaller 2 bg blue \
 mainBg cyan speckle speckle]
 set o [dict merge $_ $args]
 pluck o color smaller bg mainBg

 resetSpeckles {*}$o bg $resetBg
 eachSpeckle s {*}$o {
 if {[diex $s] == [diey $s]} {
 {*}[o speckle] $s $color $smaller
 snip $s "$s is $color"
 } else {{*}[o speckle] $s $bg}
 suspend $s
 }
}

8a

Here are some examples of what you might do with a pluggable speckle command:

● Do no speckling at all to measure the time spent in your algorithm and, indirectly, also the time
that's used to do the actual painting. When an action finishes it will print the time it took in the
console – so we don't need to worry about the actual measuring here.

● Count how often speckle is called. We will need to check that count in the console afterwards,
because action returns before the action finishes. (Maybe we need an ActionFinished event.)

● Do not paint the speckles, but collect a list of deferred speckles that may be executed later.

Please note: This would also work without using apply, but action currently logs all
 its args into the console – and the long list would make the console slow!

● We might experiment with alternative speckle implementations using canvas instead of image

● … or even delegate the actual drawing into another thread.

action demoSpeckles8 lots [range 126 128] speckle {apply {args {}}}8b

set count 0; action demoSpeckles8 lots [range 126 128] speckle {
 apply {{args} {incr ::count; speckle {*}$args}}}

8c

set deferred ""; action demoSpeckles8 lots [range 126 128] speckle {
 apply {{args} {lappend ::deferred {*}$args}}}

action apply {{} {foreach _ $::deferred {
 speckle {*}$_; suspend [lindex $_ 0]}}}

8d

8e

More Pluggable Stuff

proc chooseLoop {createLoop var args} {{*}$createLoop $var {*}$args}

proc overEachSpeckle { var args} {' eachSpeckle $var {*}$args}
proc overList {list var args} {' foreach $var $list}
proc overSensorText {text var args} {' eachSensorInText $var $text}

proc demoSpeckles9 {args} {
 set _ [' coreAlgorithm speckleIfXEqualsY \
 prepare resetSpeckles \
 loop overEachSpeckle]
 set o [dict merge $_ $args]
 pluck o coreAlgorithm prepare

 {*}$prepare {*}$o
 {*}[chooseLoop [o loop] s {*}$o] {
 {*}$coreAlgorithm {*}$o for $s
 suspend $s
} }

Here's the most heavily dissected version I could come up with.

We can configure the type of loop were using (because we might, for example want to iterate only over
some sensors provided in a list instead of contiguous parts of the quilt (… which is quite
far-fetched in our quilt coloring example, but reasonable when we're implementing other features).
This calls for some additional indirection which I don't want to explain in-depth (the red code), because
we're soon going to see a better way to achieve the same result.

I'm also making the preparation of our background exchangeable (which leads to an interesting set
of new combinations), and I'm pulling out our complete core algorithm – which might not be the idea
because it leaves us with an overly-generic empty shell, but today it will enable some easy examples.

The more we're approaching genericity, the more we're typically gonna see the expansion operator {*}

 9a...

Just in case you sadly missed the implementation of our core algorithm … here it is:

You should still recognize the last four lines here from the previous example.

The only thing that happened is that this part of the code has become a procedure of its own, and it
therefore also got to parse its own arguments.

It brought over arguments like color or smaller from our earlier versions which aren't used any
more in the code that's now calling it. Additionally, the sensor id which was the loop variable before
needs to be extracted from the command line. We decided to use the $::SelectedSensor as the
default for that, which seems to be a good choice especially this is to be used at the command line.

We are still plucking the args we're using … but to which effect? We received a copy of our caller's
args … so if we would, as in our earlier example, use bg and wanted to replace it with mainBg
before it's going down to resetSpeckles … we couldn't. resetSpeckles is called by our caller, we
cannot change our callers args, and anyway … resetSpeckles will be called before we are called.

In the long run, extracting this procedure might have been a bad idea. Problems like this seem to set
the limits of the dict args technique. I've never been bitten by that, and I'm expecting that to happen
anytime.

proc speckleIfXEqualsY {args} {
 set _ [' for $::SelectedSensor smaller 2 \
 color black speckle speckle]
 set o [dict merge $_ $args]
 pluck o color smaller speckle for

 if {[diex $for] == [diey $for]} {
 $* speckle $for $color $smaller
 snip $for "$for is $color"
 after 10
} }

...9a

speckleIfXEqualsY ;# try that after selecting different sensors 9b

Different Looping styles, different preparations...:

This example loops over only the three sensors of a short list.
In the result, only these three speckles will be painted on the quilt because the loop argument is
cascaded down to resetSpeckles which will use it in the same way.

● Here's a complex example in which I'm doing three passes by using demoSpeckles9 twice:

● The outer instance (= last pass) of demoSpeckles9 uses a second instance of
demoSpeckles9 instead of its default preparation.

● The second instance uses the default preparation (→ resetSpeckles), but replaces the
core algaorithm to paint the yellow speckles below.

● This image has been taken right in the middle of the algorithm's third pass.

action demoSpeckles9 lots 126 loop [' overList {
 {409216 3 3 3} {409216 3 3 4} {409216 3 4 4}
}] color white smaller 0

9c

9d action demoSpeckles9 lots {126 127 128} prepare {demoSpeckles9 coreAlgorithm {
 apply {{args} {if {[diey [_ $ args for]] == 3} {speckle $_ yellow}}} }}

More Pluggable Stuff

A More Realistic Plugging Example

In my wafer overviews, I'm using all available means
to encode information. The idea was that information
should be visible if you look for it, but also easy to
neglect if you look for something else.

In the sensor reliefs, I'm showing sensors as sunken if
they are still waiting to be rated manually (If a
sensor's problem is readily visible I usually don't rate
it), while bonded sensors appear as raised (ridge if
both should be true).

By some recent changes, this has become mostly
redundant – so this algorithm is a candidate for being
made pluggable as 'relief', which will give the user
a possibility to encode different information in the
sensor relief.

Moreover, by accepting Tk's original relief words in
addition to implementatons of the required interface,
we might also mimic Tk's -relief option.

Cascades Of Differently Relevant Default Values

The wafer overview is created by the showWafer procedure which in turn calls
showSensor for every sensor on the wafer. Together, they got roughly 50
parameters. (BTW – yes, I'm simply using procs. No classes, no megawidgets.)

showSensor defines its defaults which may or may not be replaced from within
showWafer. For example: the thumbnail size whicg should be smaller if a full
wafer is shown. But … what if some user has a high resolution display and
needs to increase the thumbnail size? We can prepare for that by merging in
additional sets of defaults:

This variable can be edited in the console or with a GUI, and its values will take
precedence over the hard coded defaults, but not over the args.

And it doesn't end here. Each time the overview is created, it logs its command
line in the console. Thismakes it easy to copy, paste and tweek the call. The
image on the right was created by adding 'aspect gradients'.

If I have to do that over and over again after GUI clicks, I'd like to specify it once
and for all. We can help here without disturbing other calls by merging in another
set of defaults in the code bound to the GUI event:

set o [dict merge $_ $::DefaultValues(ShowWafer) $args]

bind .quilt <3> {showWafer for [getSensorAt %x %y] and maybe \
 more adjustments {*}$::DefaultValues(ShowWaferViaQuilt) }

Dict Args Ate Up My Positional Args !!!Dict Args Ate Up My Positional Args !!!
After I've been using dict args quite some time, something creepy happened:

I began to use dict args to fill the needs of an evolving application. Nearly all procedures started out
using only positional arguments. As the appliction grew, I added more and more positional
arguments and made them optional. But eventually, I've had enough of needlessly having to fill in six
values just to be able to specify the seventh.

So … this mechanism seemed the easiest and quickest way to replace a long row of optional
positional arguments – but it was never intended to replace the formerly mandatory arguments.

Let's take at the wafer overview window as an example: You would, among many optional things,
always require to specify at least the wafer you wanted to see, and a window name … wouldn't you?

No, you wouldn't.

It makes perfect sense to use a default window name, and to reuse this window whenever a wafer
overview is requested. This way, there's usually always at most one wafer overview window –
except when a second (third …) one has been requested explicitly.

And about the wafer … after a $::SelectedSensor had been introduced, this is the mandatory
choice as the default of a then optional argument. Especially when called interactively via console.

Positional arguments have become a rare thing.

Migration Of Features / Growth Of Tiny Languages

So … did you notice?

We are just witnessing how parts of the code that were intrinsic to procs in our earlier, more classical
programming style, are starting to regroup, migrating away.

Some parts of the code have a tendency to migrate upwards, towards the caller who will gain more
flexibility by exchangeable features he might override if there's any need – just like we've seen in the
speckle or coreAlgorithm examples.

Others features have just the opposite tendency to seep downwards where they are assimilated by
and extending existing features, from where they also add to the callers flexibility – for example when
eachSpeckle receives additional fromList or fromText parameters, voiding our earlier, overly
complicated attempt to iterate over different kinds of containers. Or maybe, when a relief
parameter will, in addition to the relief values defined by Tk, accept a partial command that will
calculate the required relief.

Either way, this migration is forming “tiny languages”.

I've heard some features of Tcl, like “end-1” style list index specifications, being called tiny
languages. I think we can rightfully call a relief parameter which accepts different kinds of values
a “tiny language” in its own right … and maybe we should also use this term for Tk's original relief.

This is not a fact, but rather a question of perspective … and in my changing perspective I'm also
ready to call the eachSpeckle command with all its parameters a tiny language and, yes, our
demoSpeckles example too. Tiny languages from the same domain (e.g. sensors/quilt) are forming
domain specific languages. And dict args (currently, in my eyes) seem to form a common namespace
within a such a DSL, where every party may add freely, but responsibly. This is a current key aspect
of my world view; objectoriented hierarchies are still there but receding behind this, supporting it.

“TCL” suddenly seems to be the abbreviation of “Tiny Cooperative Languages”.

Co-Looping = Coroutines Sharing A Single Loop

Currently, we still have to wait while our speckles are getting painted in two passes – first, the
background will get refreshed, and then before the main information can start to appear …
but this takes too long!

Some of the real specklings I've created are using even more passes.

Early versions of my software had even worse behavior because, back then, I used to add
new lots at the bottom. This meant that I had to wait to the very end before the information
I've been most eagerly waiting for appeared. (Well … at least I had some visual feedback).

Of course, I do want to see information concerning my newest lots early, and without having
to wait through multiple passes.

Again, coroutines can provide an answer – and I want to show how I'm using them to create
a a chain of procedures that can share one common loop.

Only the first coroutine in this chain (the "master") will do the actual looping, and provide this
loop to all its slaves.

Master and slaves need to be instrumented differently, and I will show both these
instrumentations.

All the necessary communication is contained in the master or the slave – we don't need any
additional framework, but I will eventually show how to factor out a utility procedure.

All in all, we will insert only about 10 lines, and these will form a pretty compact block.

The Co-Loop Master

resetSpeckles is already prepared to act as a slave upon request, so our first experiment is to
transform demoSpeckles into a master, and to use that feature of resetSpeckles.

● When starting the coroutine, the parameter coloop is passed down to the slave using dict args
to let it know that it is supposed to act as a slave.

● tidy ensures that the lifetime of our coroutine is, through the use of var traces, in a technique
that's called RAII in C++, controlled by the variable co which is our reference to the coroutine.

● In each iteration step, the slave is triggered with the current loop value; no value meaning stop.

proc demoSpeckles10 {args} {
 set _ [' coreAlgorithm speckleIfXEqualsY prepare resetSpeckles]
 set o [dict merge $_ $args]
 pluck o prepare coreAlgorithm

 set co nop
 if {[llength $prepare]} {
 set co coloop#[incr ::ColoopCount]
 coroutine $co do $prepare {*}$o coloop yes
 tidy - co {{} {if {$co ne ""} {$* co}}}
 }

 eachSpeckle s {*}$o {
 {*}$co $s ;# no args needed here - it already got them!!!
 {*}$coreAlgorithm {*}$o for $s
 suspend $s
} }

action demoSpeckles10 lots [range 126 128]

1

2

1

3

1

2

1

3

10

The Co-Loop Slave

To prepare our code as a slave, we need to...

● accept a coloop parameter hat tells us if we should act as a slave
● do an infinite loop instead of looping over our sensors
● yield to accept the current loop value
● break the infinite loop when didn't get a loop value

Remember *not* to pluck the loop … it will be needed down the chain if we're not co-looping.

proc demoSpeckles11 {args} {
 set _ [' coreAlgorithm speckleIfXEqualsY coloop no \
 prepare resetSpeckles loop overEachSpeckle]
 set o [dict merge $_ $args]
 pluck o coreAlgorithm coloop prepare

 set co nop
 if {[llength $prepare]} {
 set co coloop#[incr ::ColoopCount]
 coroutine $co do {*}$prepare {*}$o coloop yes
 tidy - co {{if {[llength $co]} {$* co}}}
 }
 {*}[if {$coloop} {' while 1} else {chooseLoop [o loop] s {*}$o}] {
 if {$coloop} {set s [yield]}
 $* co $s
 if {![llength $s]} {break}
 suspend $s

 do $coreAlgorithm {*}$o for $s
} }

proc demoSpeckles11 {args} {
 set _ [' coreAlgorithm speckleIfXEqualsY coloop no \
 prepare resetSpeckles loop overEachSpeckle]
 set o [dict merge $_ $args]
 pluck o coreAlgorithm coloop prepare

 set co nop
 if {[llength $prepare]} {
 set co coloop#[incr ::ColoopCount]
 coroutine $co do {*}$prepare {*}$o coloop yes
 tidy - co {{if {[llength $co]} {$* co}}}
 }
 {*}[if {$coloop} {' while 1} else {chooseLoop [o loop] s {*}$o}] {
 if {$coloop} {set s [yield]}
 $* co $s
 if {![llength $s]} {break}
 suspend $s

 do $coreAlgorithm {*}$o for $s
} }

co-looping in all its gloryco-looping in all its glory

2

3

1

2

1

3

4

4

11

Co-Loop Instrumentation As A Library Procedure

We can create a library procedure from that instrumentation code, and using that library procedure
will make our speckling algorithm simple again.

Don't try to immediately grasp this library procedure below … it's only a rough draft. Go ahead to
the next slide that will show the final version of our example code and some last calls using it.

This implementation additionally offers to choose between the original loop and the co-looping
version by offering an additional dict arg.

proc coloop {coloopflag slave loopvar loop arglist body} {
 set o [dict merge {allowColoop yes} $arglist]
 upvar $loopvar it
 set co nop
 set allowed [$ o allowColoop]
 set slave [' {*}$slave {*}$arglist coloop $allowed]
 if {[llength $slave]} {
 if {$allowed} {
 set co coloop#[incr ::ColoopCount]
 coroutine $co do {*}$slave ;# Start the slave and
 tidy - co {{if {[llength $co]} {$* co}}} ;# let it tidy itself
 } else {do {*}$slave} ;# or execute the slave in one go
 }
 {*}[if {!$coloopflag || !$allowed} {
 chooseLoop $loop it {*}$arglist ;# Masters do the original loop,
 } else {' while 1}] { ;# Slaves loop indefinitely.
 if {$coloopflag} {set it [yield]} ;# Take it from your master
 $* co $it ;# then pass it to your slave
 if {![llength $it]} break ;# and if our loop isn't done
 uplevel 1 $body ;# call the loop body.
} }

12

The Final Version Of Our Demo

Heavy use of
dict args,

higher order loops -

otherwise, we're back
to simple again.

With this final version, we can revisit our old three pass demo, while using all our new features.
Admittedly, this is not the code I'd like to show Tcl beginners. But it's possible to read it if you take
the due time – after all, it is crammed with features. For me, this is gluing of a higher level than I've
known it five years ago – yet it's still possible to do it as some quick console throwaway code.

action demoSpeckles lots {126 127 128} prepare {demoSpeckles coreAlgorithm {
 apply {{args} {if {[diey [_ $ args for]] == 3} {speckle $_ yellow}}}
}} allowColoop yes

proc demoSpeckles {args} {
 set _ [' coreAlgorithm speckleIfXEqualsY coloop no \
 prepare resetSpeckles loop overEachSpeckle]
 set o [dict merge $_ $args]
 pluck o coreAlgorithm coloop prepare

 coloop $coloop $prepare s [o loop] $o {
 suspend $s
 do $coreAlgorithm {*}$o for $s
} }

allowColoop yes

allowColoop no

13

I think we've come a long way from that initial two-liner:

We've added lots of flexibility, but still our code is a simple

... and this amazes me. We didn't need to bend or twist our original straight forward
procedures. There are no complex frameworks we need to learn, no adapter classes we
need to subclass before we might think about appoaching our main task - only some very
simple helper commands.

Everything seems to be falling into place quite easily.

eachSpeckle s lots [range 126 128] {if {[diex $s] == [diey $s]} {
 speckle $s black 2; snip $s "$s is black"
}}

Conclusion

proc NAME args {
 PARSE_YOUR_ARGS_SOME_STANDARD_WAY
 LOOP ... {
 DO_YOUR_STUFF
} }

(-
:

Thank you.
Thomas-Lang.com

