jtap - Using Tcl to design interactive eL ear ning materials

by Diplom-Medieninformatiker (FH) Christian Kohls, Diplom-Medieninformatikerin (FH)
Susanne Kaiser and Diplom-Wirtschaftsinformatiker (FH) Tobias Windbrake / University of
Applied Sciences Wedel

Introduction

jtap is an authoring tool for multimedia content, focusing on eLearning materids. With jtap,
one can cregte dynamic and interactive dides usng a visud what-you-see-is-what-you-get
interface. The program is written in Java using the powerful graphics engine and capabilities
of Java Swing. We use Jacl to offer course designers the opportunity to add interactivity to
their dides. With Td they can define action ligts to handle events and perform the
communication between learning objects on the board. Also we use Tdl for the
synchronization of multiple computers, so that the content of a dide can be displayed
smultaneoudy on many computers a once. Each change to adide (e.g. moving objects,
highlighting or writing) will occur on dl connected computers at the same time.

A didein jtapislike adide in an average presentation program, e.g. PowerPoint. Y ou can
arange the dides to a curricula dong a multi-layered timeline to define the display order. One
layer can be used for amadter dide, containing objects that will be visble during the complete
presentation. Another layer can be used for content that changes after every presentation step.
Since the timdine provides unlimited layers, there dso could be alayer that changesits

content less frequently, e.g. for objects that apply to the scope of a chapter.

L earning Objects Interacted by Tdl

The power of jtap is hidden in the objects that can be placed on the virtud dides. The
complexity of an object can vary from smple text and graphic € ements up to complete
applications (database access, spreadsheets). There are dready many standard objects
included (textfield, button, graphic, paint area, html, video, sound, etc.), but the set will be
further extended by plugins. The appearance and behavior of an object is set by alist of
properties. These properties can adso be manipulated during the runtime of a presentation or
learning course. Of course, these manipulations must first be defined. Here Tcl plays amgor
role, because al the scripts for a course are defined as Tcl programs. We extended the
language with specid multimedia commands that can be applied to the jtap objects. There are
simple commands to set or get the property vaue of an object. There are dso some commands
that define animations or complex work tasks for an object (test evauation, database
connections) within only one line of code.

Script Types

We digtinguish between dide scripts and event scripts. Slide scripts belong to a specific dide
in jtap. Thereis one onEnter script that will be executed each time a dide will be displayed
for thefirst (or n-th) time. Here one can define initid actions, e.g. resetting Tcl varigbles or
object properties. Animations to build up the dide content can be defined: objects could dide
in one by one from the screen border (an effect well-known from PowerPoint). The onRepest
script will be evauated continuoudy again and again. Thisis useful for complex animation

sepsin smulaions. Upon leaving adide, the onExit script will be invoked to store data or
andyze the user input.

The second category of Tl scriptsin jtap are event scripts. Those scripts belong to one object
ingance. Technicaly the user changes string properties to define a Tcl script for each event
that can occur in an object. Objects support the regular GUI mouse and key events. Some
objects have properties for uncommon event types. For example there is a multiple choice test
object with the events "correct answer” and "false answver”.

Applications of Tcl

Applications of Tdl in jtap include animation effects, interaction of objects, navigation
sructures, tutoring, test evaluation and smulations. For animations one can cdculate an
animation path for an object based on the property values of other objects. All kinds of objects
-- graphics or sub applications -- can be moved on adide by one smple Tcl command. A
wide range of test forms can be evauated by Tcl scripts. Conditioned expressions can be used
to select the next test page or question depending on the previous results of the student. This
can aso be used for smart navigation through a course. Jumps to other dides of a course can
depend on which exercises the sudent attended before. The visible content of adide can be
specified by the number of times the student used it. Texts and explanations can be more
detailed for those who return severd times to the same page. Eventualy, Tl scripts can be
used to implement smulations or virtua experiments within an eLearning course.

Using Tcl for Animation

There are at least two new powerful commands to cregte animations: morph and dide. Both
commands change anumerica property of avisud object over a specified time period. The
gyntax isthis

mor ph sl ideNane el ement Name propertyNane propertyVal ue duration

The combination of dideName and e ementName specifies the object that is subject to be
changed. With propertyName and propertyVaue one specifies anew vaue for acertain
property. However the value is not set immediately, but will be gpproximated over thetime
period that is defined in duration. If we have asimple graphic object named "worldGraphic”
which ison the dide "demondration” we can move the object from its current location to a
new X pogtion:

nmor ph "denonstration" "worl dG aphic" x 80 12

Here we move the object to the horizonta screen position 80. The movement will take 12
time steps. By changing the location properties you can animate any kind of avisua object.
Even atext fied or a spreadsheet could be moved on the screen using the morph command.
Animation can be gpplied to each numericd property that effects the visua presentation on
the screen. Examples are properties for colors, opacity, object size, rotation etc.

By embedding the morph command in a Tcl script, you can define dynamic animation
behaviours. For example, you can use avariable that defines the speed of the animation:

set ani nSpeed [expr $userSettings * $soneot herData]

rmr ph "denonstr

ation"

"wor | dG aphi ¢" x 80 $ani nSpeed

In the previous example the animation speed (that is the number of time steps needed to
gpproach the property's target value) depends on the variable' s userSettings and
someotherData. Animations could aso depend on conditions:

set stockVal ue

if { $stockvalue > 100 } {

} else {

[expr $stockVvalue + rand() * 10 -
nor ph "denonstration” "worl dG aphic" x 90 12
nor ph "denonstration" "worl dGaphic" y 0 12
nor ph "denonstration" "worldG aphic" x 0 12
nmor ph "denonstration" "worl dGaphic" y 90 12

}

5]

Here we moved our "worldGraphic" into the upper right corner of the screen, if the
sockVaueis greater than 100. Otherwise, the “worldGraphic” would move into the lower left

corner.

Assuming we have another graphic object "sunGraphic” on the dide and we wart the

"worldGraphic" to move towards the "sunGraphic”. Then we can write this code:
mor ph "denmonstration" "worl dGraphic" x [getProperty "denmponstration" "sunG aphic" x] 12
mor ph "denonstration" "worl dGraphic" y [getProperty "denmonstration" "sunG aphic" y] 12

The command getProperty returns the current property vaue of an object. The corresponding
setter command is setProperty. setProperty can be used to directly change a property value
instead of animateit.

IE i If
T L
1 —.| Fi}.!'. |t & e %%: L5 Temirm i ol E
r i -
.r.,f'mlw AEIE S _ﬂ ;: |-'
= ST L :
[(BICTER N T R.i"_ o o
wn o5 | = : s | ¥
g 1T & W [l e
%ﬁ% Streichlinien (Streaklines)
e ™ " [F-4 1
| 1 R b o] . P
sl N R e |
| T [~ | "Y"&"m [™
Slard mehrerer Padkel am glesaen O zu verschidenen 2efpunbien
Sirekchinke umfassi de akiuellen Posilonen dessr
Partkel zu snam besiimmien Zedpunk
|ilormen m
perTe— [physikadkch 2.8
"psth } < Farb s wisnar Proiiion in sinsn Wassahanal gieken
1psil - Momantadnahme snispcht der Sirechiines
gkl -
i e W 1
Tujpthe W 1 =
iR S i'-
st | i 2) || b | Bergsrwiorn. e [Grm Beastosss | AOELETw e

Using the morph command we animate the
red particlefrom its original position toa
new destination:

nor ph $thisSlide particle x 67
norph $thisSlide particle y 37

Test Evaluation and User Feedback

InaTd script we can evaluate the current state of a jtap dide and respond to user activities. If
we have a dide with questions and text fields for the answers, we can define an event script
for a button object. In this script we check the user input and can give feedback by changing
the displayed dide:

if { [getProperty "denmponstration" "inputField" text] == "User answer" } {
set Property "denonstration" "infolLabel" text "Yep, the answer was right."
set Property "denonstration" "infolLabel" green 255

incr correct Answers
set score [expr $score + 30]

} else {
set Property "denonstration" "infolLabel" text "Ch no! Wong answer."
nmor ph "denonstration" "infolLabel" red 255 12

i ncr wrongAnswer s

}

In the previous example we type-matched the input of the text fidd "infoLabd" with the
string "User answer”. If both match then we give a positive user feedback. We st the text of
"infoLabe" to the string "'Y ep, the answer isright.” In addition we change the text color of the
label to red, increment a counter and increase the user's score. If the user's answer does not
match, we give a negative feedback and increment the counter "wrongAnswers'. The color of
"infoLabe" will turn to red. Instead of directly setting the color, we use color animation.

Directly comparing adring to auser input is not very user friendly, because it will not
tolerate any kind of errors. The strings "UUser" and "User" should be treated the same way
since type errors should be tolerated. Tcl of course dlows more flexibility in matching the
user input, e.g. using regular expression.

The user may have different ways of manipulating the dide content at the runtime of a

learning session. He can enter text into text fields, drag objects on the screen, use check boxes
or menuson adide. InaTcl script we can interpret the user settings as atest solution.
Depending on the test results the Tcl script can store and manipulate variables, change and
animate object properties or jJump to another dide of the course.

Creating Usertracks

Y ou can track the user path through the didesusing a Tdl list. Each time the user leaves a
dide the onExit script will be executed. In this script alist of "vistedSides' can be extended:

lappend vistedSides $thisSide

The varidble "thisSide" is set by the jtap environment and contains the name of the script's
hosting dide. We can usetheligt in severd condition satements. Assuming the accessto the
dide"Fina exams' requires that the user has seen the dides " Chapter One”, " Chapter Two"
and "Exercise”" before, than we can check this condition in the onEnter script of "Fina
exams':

if { [Isearch visitedSlides "Chapter One"] == -1 || [lsearch visitedSlides

"Chapter Two"] |== -1 || [lsearch visitedSlides "Exercise"]} {
go slide "Deny Message"

}

Using the |search command we checked, whether al requested dides are part of thelidt. If
one of the searches failed (Isearch returns - 1) then we use the jtgp command "go" to jump to

the dide "Deny Message'.

Thereis another way to check whether a dide was viewed or not. With the jtap command
"didelnfo" you can find out how many times a dide was displayed. Y ou can use that
information to hide or show additiona information depending on the number of times adide
was used. The multiple use of adide could be ahint that the user is missng some
information. If we define the following onEnter script for adide, the text object
"extralnformation” will show up on the fifth use of the dide:

if { [slidelInfo $this visits] > 4 } {
setProperty $this extralnformation visible true

}

For navigation we can dso use more complex conditions considering the results of former
tests, the usage of didesor individua user settings. The following script could be an example
for the onPressed script of a"Next" button object:

if { [slidelnfo "Overview of Content" visits] >= 1 && $userLevel ==

"begi nner" && $qui zScore > 120 && $result == 30 } {
go slide "Expert Level"

} else {
go next

}

Implementing Smulations and Experiments

Tcl can add red interactivity to el_earning materials. With a Tcl script a course can react
dynamically to user input and direct the behaviour and gppearance of objects. One can specify
al the control structures for smulations, experiments, business games or case studies with

Tdl. Theinput and output of datawill use the infrastructure and graphic interface of jtap. On a
dide you can use standard objects for graphics, texts, severa test forms (such as multiple
choice), video, audio and GUI dements.

Theinitid setting for an experiment can be defined in the onEnter script of adide. Here one
can st al the required variable vaues. In the onRepesat script the programmer defines dll
continuous dynamic changes. As an example adide could contain an areawith avirtua
gravity fidd. Ingde thefied al objects move according to the physica laws of gravity. Each
step of the movement can be calculated in the onRepeat script. Since this script will be
executed continuoudy aslong as the dide is shown, the objects handled in the script will
move step by sep. While the smulation is running the user can manipulate the experiment
settings. The event scripts of objects handle the user input and alow the user to drag other
objectsinto the gravity field or change the gravity congant. Findly in the onExit script we
can anadyse the current position of the objects and store the results in variables to access those
within other dides

Lernen mit jtap

Beispiel Simulationen und Experimente mit jtap

— start speed: metres / zeconds

Tcl script to move the canonball one time step:
incr flightTime

set x_position [expr $speed * cos{$angle) * $flightTime]
set a [expr -.005 * 9.81 * ($flightTime * $flightTime)]

set b [expr $speed * sin($angel) * $flightTime]

set y_position [expr $a+ $b]

'- setProperty flySlide canobBall x $x_position
setProperty flySlide canonBall y [expr $screenOffset - $y_position]

Start angle:

35 degreas — ——
. - — ‘b

Experiments: The onRepeat script definesthe cannonball's movement regarding to a physical law. Each
timethe script isinvoked one step of the movement will be executed. The user first can set up the start
speed and angle using the sliders. The flight startswhen the user presseson the cannon.

Tcl isalso used internally

jtap not only offers Td as a scripting language for the program user, but aso uses Tdl
interndly for distributed computing and white board functions.

jtap is applicable as a standa one version, but aso can run synchronoudy on severa
computers.

Every jtap gpplication is provided with an integrated server, that can be sarted individualy.
As s00n asthe server runs, severd remote clients can connect immediately.

To preserve consistency in content, the server initialy transfers the current presentation to
each connected client. After the content has been loaded locdlly, every networked student
shares the same view and working space.

Since we have encapsulated the ways to set the properties of objects, it's easy to monitor each
access. At runtime if the eements of the distributed presentation have been modified, the
corresponding events will be delivered as messages to each participant. This network protocol
congsts mogtly of smple proprietary Tcl commands. If an interaction occurred, aclient-side
message will be generated and sent to the server automaticdly. In this context the server only
acts as amediator by accepting this message, extracting the address data and forwarding the
rest of the information to the appropriate receiver. At the recaeiver the parsing of the

transferred message, congisting of Tcl commands, will be delegated to the Td interpreter. It
extracts the commands and its parameters. As aresult the state of presentation will be
updated, corresponding to each connected computer by setting the values of elements
properties respectively. To usethe Tdl interpreter, it facilitates the devel opment expenses
enormoudy. We do not have to take care of parsing issues and can extend the network based
functiondity easlly by just adding new Tcl command classesto our systems.

Conclusion

Using Tcl in our project guranteed the use of awell-devel oped language. The easy-to-use
syntax dlows every novice to write Smple actions, while the more experienced developers
are satisfied, too. jtap's event-driven use of Td scipts does not limit the use of jtap to
el_earning applications but rather provides away to build graphic user interfacesfor Tcl in
generd. Also, the combined use of Tl and Java unites the advantages of both worlds.

About the project

jtap was started by a smdl team of graduated students at the Wedel University of Applied
Sciences, Germany. In the meantime, there are about 50 students who work for the core team
and extend the software. In the summer of 2002 we intend to publish the sources and provide
English documentation dongsde the origind German verson. The complete software can be
downloaded at: http://mww.jtap.org

Contact

Chridian Kohls
Feldstrasse 143

22880 Wedel

Germany
christian.kohls@jtap.org

