
1

Using Tcl/Tk in a
Legacy Application

Franco Violi - Tech Mgr
Metodo Srl - Modena - Italy

fvioli@metodo.net
http://www.metodo.net
http://www.lapam.mo.it

Metodo Srl

• IT technology leader for a pool of
companies, 560 employes

• Our application is used on 60 servers, from
60 to 2 users each

• The application has been also installed in
300 companies, growing each month

• From Payroll System to Order Processing
and Stock Management

2

Legacy Applications

• Old, but they works!!!
• RPG or COBOL language
• Character based user interface
• Huge maintenance needed, because the

problems change in the time

Our Application

• Written in Cobol
• A clear and well defined API User Interface
• Character based
• Heavy use of batch Database processing

– The 60 servers collect data in the main database
each month

– The size of the main database is about 20
Gbytes

3

Our Application numbers

• about 3.100 Cobol Programs
• about 5.000 Screen Forms
• about 850 Database Tables
• about 1.570.000 cobol statements
• … and we use abstractions !!!!

The problem of evolving

• A Cobol Programmer is a Cobol
Programmer

• The IT leader must evolve without killing
the Cobol Programmer, because
– He knows the application
– He knows the problems
– He knows the company

4

Rewrite or Evolve ?

Who will follow You ?
What will happen during rewriting ?
What about the intermediate stages in

the real world ?

The Cobol Engine

• The compiler generates intermediate code
(bytecode)

• The bytecode is interpreted by an
executable (runtime)

• You can customize the runtime
– Adding C code

int my_c_sub(int argc , char **argv)
– Making it accessible by Cobol with the

standard syntax

5

The Tcl/Tk Engine

• Easy to be embedded in other languages,
the Cobol Interpreter

• Easy to be extended with new commands,
the cobolwakeup command

• A window opened to a new world
– i.e. Cobol is not able to poll for an E-Mail and

read the attachements
– … and too many other things that makes Cobol

not fully usable today

Cobol and the Event Loop

• A single C variable that defines a status
– Tcl wants to run
– Cobol wants to run

• A single DoOneEvent loop
– Run until Tcl give control to Cobol
– Update the event queue before returning control

to Cobol

6

Cobol and Tcl/Tk
Initialize the interpreter

CALL “TCL” USING
FUNC-INIT
FUNC-STATUS
TCL-INTERPRETER
[EXTENSIONS-MASK]

Cobol and Tcl/Tk
Destroy the interpreter

CALL “TCL” USING
FUNC-EXIT
FUNC-STATUS
TCL-INTERPRETER

7

Cobol and Tcl/Tk
Evaluate a script

CALL “TCL” USING
FUNC-EVAL
FUNC-STATUS
TCL-INTERPRETER
TCL-SCRIPT
TCL-RESULT

Cobol and Tcl/Tk
Entering the Event Loop

CALL “TCL” USING
FUNC-CONVERSE
FUNC-STATUS
TCL-INTERPRETER
TCL-RESULT

8

Cobol and Tcl/Tk
Updating the event queue

CALL “TCL” USING
FUNC-REFRESH
FUNC-STATUS
TCL-INTERPRETER

Cobol and Tcl/Tk
Connecting variables

CALL “TCL” USING
FUNC-DEFINE
FUNC-STATUS
TCL-INTERPRETER
TCL-NAMES
COBOL-BUFFERS

9

The ‘hello-world.cob’ example

• Demonstrates how to connect cobol
variables to tcl variables

• How to include tcl scripts into the Cobol
Program

• It interacts with tcl’s event loop and tk
widgets

• Demonstrates how to update the event
queue

The rooms.cob screen shot

10

The ‘rooms.cob’ example
/usr/lib/tk8.0/demos/floor.tcl

7a8,14
> wm protocol . WM_DELETE_WINDOW {
> cobolwakeup Exit {} {}
> }
1306,1308c1315,1316
< button $w.buttons.dismiss -text Dismiss -command "destroy $w"
< button $w.buttons.code -text "See Code" -command "showCode $w"
< pack $w.buttons.dismiss $w.buttons.code -side left -expand 1

> button $w.buttons.dismiss -text Dismiss -command "cobolwakeup Exit {} {}"
> pack $w.buttons.dismiss -side left -expand 1
1358a1367,1370
> proc cobolRoom {c} {
> cobolwakeup Choice Room [newRoom $c]
> }
1364a1377
> $c bind room <Button-1> "cobolRoom $c”

A screen shot before Tcl/Tk

11

A screen shot after Tcl/Tk

What’s now in mind

• Why a tcl script must be always evaluated
on the server ?

• Modern Cobols can be launched by inetd. Is
it usefull ?

• … all what you can imagine in a tcl/tk
‘window’

