
Standalone Executables with Wrap

By Jan Nijtmans

Abstract

One of the main problems with the distribution of Tcl/Tk applications
is that it relies on Tcl/Tk being installed at the user’s site. In this paper
an approach is presented which allows the generation of standalone exe-
cutables which are much smaller and faster than other approaches. The
generation process does not require the use of a C-compiler, which makes
it a very fast procedure. The method works on any Windows or Unix ma-
chine.

Introduction

Wouldn’t it be nice to be able to pack a group of Tcl/Tk scripts in a single
executable, put it on a floppy, and hand it out to anyone interested to try
it? Suppose one of the users is a developer who finds a bug, or simply
wants to extend it. He extracts the relevant script from the executable,
changes it, and places it back in the executable. Another user wants to
add some more fancy dialogs which are offered by an extension (e.g. Tix or
BLT). No problem, just pack the necessary dll’s in the executable together
with the modified scripts. The result is again a new standalone executable
which can run without the need for installation. All of this can be done
without the need for a compiler. Any desired change can be performed in
minutes.

Someone else wants to distribute an application, but doesn’t want other
to be able to peek in the source code. This can be done by compiling the
scripts in bytecodes, and pack the bytecodes in the executable. Further
protection can be reached by encrypting the scripts. Only people who
know the password can unpack the scripts. Of course, any reasonable ex-
perienced developer will be able to break this protection, because in order
to run it must be decrypted anyway, but it is a barrier.

Another person wrote a windows application and needs a suitable in-
staller. Suppose Inno Setup doesn’t offer sufficient flexibility and WISE or
InstallShield are too expensive. Then Wrap could be an option.

Although the above examples mainly involve Windows, the same ap-
proach works on UNIX as well. The only platform where it probably doesn’t
work this way is the Macintosh.

1



Idea behind Wrap

Wrap is based on the assumption that executables have their headers in
the beginning of the file while ZIP-files have easily distinguishable mark-
ers at the end. If data is glued after an executable, the executable can still
be run without sacrificing the memory use or speed. Equally, ZIP-files can
be prepended by any data still allowing the file to be handled as a ZIP-file.
Many utilities are already available to handle ZIP-files, most notably Info-
Zip’s "zip" and "unzip" or Nico Mak Computing’s "WinZip".

ZIP-files have many useful features:

• Standard compression library available (zlib), which can easily be
incorporated in any application. Many platforms (e.g. Linux) al-
ready have this library installed by default.

• Encryption support available. Although this doesn’t give the most
protection you can think of, in combination with compression and
bytecode compilation it can be made very hard to break.

It seems that the ZIP format is ideal to be used as file format, in combina-
tion with a platform-specific executable format.

How to create a Wrapped executable

The first step in creating a wrapped executable is to create the executable
itself. Generally, this executable is tclsh or wish, linked together with the
Wrap extension. Then a 22-byte footer is attached to the executable, basi-
cally just an empty zip-file. This attachment activates the executable such
that it starts to behave like a zip-file. This opens the way to start attach-
ing any other file to the executable. The only problem left is how to make
those extra zip-entries useful. That’s where the Wrap extension comes in.

The Wrap extension contains all functionality needed to unpack ZIP
entries. The public domain zlib library is contained into Wrap. Apart from
the zip-entries from the executable, Wrap can also be used to open and
read entries from any other zip-file.

How is this different from other methods

Other known ways to create standalone executables are:

• mktclapp

• freewrap

• TclPro Wrapper

2



Freewrap and TclPro Wrapper work in about the same way as Wrap. They,
too, consist of an executable followed by multiple entries of other types
of data. The main two differences are that they don’t use the zip-format
for the entries and they are not usable as a separate extension. Freewrap
currently doesn’t compress the attached data (although that could be im-
plemented in a future version).

Mktclapp deviates from the other methods, in that a C-compiler is
needed to create the final executable. Data is attached to the executable
by compiling it as C-string’s. The advantage of this is that it makes it a lot
easier to compile C-code and Tcl-code in a single executable.

TclPro Wrapper is most advanced of all, but what else would you ex-
pect from a commercial piece of software. Being not open-source, TclPro
is most ideal for people who want to hide there source-code from users.
Because of this, it is intentionally made almost impossible to unpack an
executable, thereby retrieving the original data. Further on, TclPro con-
tains a bytecode compile which makes it even more complicated to re-
trieve the original source code.

Two features unique to Wrap which are not found in other solutions
are:

Cross-creation Because the generation process doesn’t require a compiler,
you can create Windows executables on unix or unix executables on
Windows. Assuming that you pre-built the Wrap executables first on
the target machine and that you have the zip utility available on the
development machine. After that, all different platform executables
can be built on one machine regardless which system it runs.

Loadable extension Al functionality of Wrap is available from Tcl/Tk as
well using Wrap as a loadable extension. This allows Wrap to handle
scripted documents.

The idea of Scripted documents comes from TclKit, which greatly moti-
vated the Wrap development. See reference below The intention of Wrap
is not to hide source-code, but to make it as easy as possible to unpack,
modify and re-pack it. Although Wrap has an obfuscation function as well,
anyone who knows the password can unpack it. The security in this way
can never be as high as with TclPro.

Code organisation.

Currently, Wrap consists of 6 parts:

wrapRsrc.c Contains the definition of the "rsrc" object type representing
a zip-file. This object cashes the entry table, which is optimised for

3



maximum speed. Any application wanting to open a zip-entry can
quickly search for it in a hash-table. Opening it merely means seek-
ing to the specified location and then starting to read the content.

wrapChan.c This module comes in view after the zip-entry is opened. It
contains the implementation of a read-only Tcl channel.

wrapInit.c This file is responsible for the initialization, and also contains
the Tcl commands supplied by Wrap.

wrapMain.c This file supplied the replacement for Tcl_Main() or Tk_Main(),
meant for standalone executables.

wrapComp.c In development. The interface to the Tcl ByteCode com-
piler. Wrap will in the future provide a ByteCode compiler similar
as the one provided by TclPro.

wrapRun.c In development. This part will form a bytecode executer match-
ing the compiler.

Wrap can be built in two ways: as static executable or as dynamically load-
able library. In the first form, the result will be two executables "tclsh83s.exe"
and "wish83s.exe" (Windows) or "tclsh8.3s" and "wish8.3s" (unix). In the
second form the result is a loadable library "wrap04.dll" (Windows) or
"wrap0.4.so" (unix) which can be loaded in a normal tclsh or wish with
"package require Wrap"

Commands

The main commands in Wrap can be divided in two groups:
::wrap::load
::wrap::open
::wrap::exec
::wrap::glob
::wrap::file
::wrap::source
These command work as much as possible identically as the correspond-
ing Tcl commands, except they operate on zip data in stead of files from
the machine’s own file system.

::wrap::index load an index file into memory

::wrap::run execute bytecode

Further on, Wrap has the following internal variables:

4



::wrap::version contains the version number of Wrap

::wrap::patchLevel contains the patch level of Wrap

::wrap::library holds the path that should be added to auto_path. On Win-
dows this is normally c:\Program Files\Tcl\lib\wrap0.4

::wrap::temp holds the name of the system temporary directory used for
caching. On Windows NT this is usually c:\winnt\temp

Conclusion

Wrap can be seen as a Free companion of TclPro Wrapper. However, where
TclPro wrapper concentrates on hiding the source code, Wrap’s goal is
to make creating, modifying and unpacking Standalone Executables as
easy as possible. In this way it is possible to create an appliation using
Tcl/Tk, and distribute it to your customers as a single standalone exe-
cutable which doesn’t require installation.

References

Wrap homepage http://purl.oclc.org/net/nijtmans/wrap.html

TclPro Wrapper http://dev.scriptics.com/software/tclpro/wrapper.
html

FreeWrap http://home.nycap.rr.com/dlabelle/freewrap/freewrap.
html

mktclapp http://www.hwaci.com/sw.mktclapp/index.html

Inno Setup http://www.jordanr.dhs.org/

WISE http://www.wisesolutions.com/default.htm

TclKi http://www.equi4.com/tclkit/news.html

Jan Nijtmans
CMG, Oost-Nederland B.V.
http://purl.oclc.org/net/nijtmans/

5

http://purl.oclc.org/net/nijtmans/wrap.html
http://dev.scriptics.com/software/tclpro/wrapper.html
http://dev.scriptics.com/software/tclpro/wrapper.html
http://home.nycap.rr.com/dlabelle/freewrap/freewrap.html
http://home.nycap.rr.com/dlabelle/freewrap/freewrap.html
http://www.hwaci.com/sw.mktclapp/index.html
http://www.jordanr.dhs.org/
http://www.wisesolutions.com/default.htm
http://www.equi4.com/tclkit/news.html
http://purl.oclc.org/net/nijtmans/

	Standalone Executables with Wrap
	Abstract
	Introduction
	Idea behind Wrap
	How to create a Wrapped executable
	How is this different from other methods
	Code organisation.
	Commands
	Conclusion
	References


