
Webshell: A Tcl-based Web Application Framework

Simon Hefti, Ronnie Brunner and Andrej Vckovski
Netcetera AG

{simon.hefti,ronnie.brunner,andrej.vckovski}@netcetera.ch

Abstract

Webshell is a rapid development framework for build-
ing powerful and reliable Web applications. It is a stan-
dard Tcl extension and is released as Open Source Soft-
ware. Webshell is versatile and handles everything from
HTML generation to data-base driven one-to-one page
customization. At Netcetera, we have been using it for
years for virtually all our customer projects, which are
typically E-commerce shops or electronic banking ap-
plications. Webshell is extensible and portable, and its
comprehensive set of commands is easily learned. Web-
shell can currently be used in a CGI environment or as
an Apache (1.3 and 2) module. This paper describes the
key features of Webshell, details it’s architecture, and
motivates design decisions.

1 Introduction

In 1999, Netcetera decided to overhaul its main work-
horse called Webshell 2 for the development of Web
applications, and to make it available under an Open
Source license. We have been using Webshell releases 1
and 2 in many projects over several years. With this ex-
perience, we felt that we could release the tool as Open
Source software, not least also because we did profit
from many different Open Source software, including
Tcl and many of its extensions. However, the Webshell
release 2 was not easy to publish, because:

• it needed private Tcl include files,

• it had our ownTcl Main which made it hard to
include other extensions unless they were dynami-
cally loadable. Also, commercial development aids
(e.g., the TclPro-suite) were not usable due to the
rather special execution semantics of Webshell 2.

• it was written in C++ which did and sometimes still
does lead to portability problems and also to a cer-

tain degree of redundancy with, e.g., Tcl’s base li-
brary function such as I/O and memory allocation.

• it did not yet use Tcl’s dual-ported objects inter-
nally.

In addition, there were other pending requirements from
our internal projects, like changeable methods for ses-
sion management and the ability to work as a server
extensions as an alternative to CGI. Finally, we wanted
to work through our list of known limitations and prob-
lems.

These issues motivated us to completely overhaul Web-
shell. While keeping the design patterns from Webshell
2, we rewrote most of the actual code. This paper covers
Webshell release 3, the result of that major release. It
is organized as follows: first, we discuss basic patterns
of web application development and compare different
approaches. Then we discuss the Webshell concepts and
their motivation.

2 History

For many software systems it is very helpful to under-
stand the development history as a motivation for various
design decisions. With Webshell 3, the history actually
shows an interesting cycle which began with a scripting-
only solution, which was followed by a C++-only solu-
tion, and gradually developed into a mixed-system, with
the scripted part gaining weight.

Initially, a simple Tcl-based layer has been written in
1994 to support simple CGI-based applications for the
then young World-Wide Web. This layer did basically
handle form input, URL decoding and also some simple
ways of session tracking, and it was only used for in-
ternal, system-administration related applications. With
a first commercial E-business application in mind we
then developed a C++-based application framework that

solved the same problems but was modeled similar to
other application frameworks such as Microsoft’s Foun-
dation Classes, ET++, Interviews, etc. This framework
provided a class library that allowed a simple and fast
development of CGI applications in C++. For config-
uration purposes we embedded a Tcl interpreter in the
class library. That is, the interpreter was basically used
as an intelligent configuration file parser.

With the use of this framework we realized that most
developers were actually using the interpreter for appli-
cation logic, too, moving code into the script domain,
because this allowed changes without recompilation. As
a result, we decided to use the C++ class library to de-
velop a generic application container, having the en-
tire application-logic implemented as Tcl scripts. This
generic application container was called Webshell and
used Tcl versions 7.4/7.5/7.6. With the release of Tcl 8.0
in 1997 we released Webshell 2 which became the main
workhorse for almost all customer projects at Netcetera
and also for a few other companies.

The current release, available as Open Source software,
has been developed starting in mid 1999. As has been
mentioned above, the main reason was to make Web-
shell easily" distributable" and portable. The outline of
Webshell 3 defined the following issues:

• Backport form C++ to C for easier portability,
thread-safeness and less redundancy with Tcl-core
routines.

• Distribute according to Tcl’s Extension Architec-
ture (TEA, see references).

• Be thread-safe to not undermine Tcl’s thread-
safeness and to be easily included in multi-threaded
applications

• Use Tcl’s object system wherever possible

• Provide better specialization of the logging module,
session management and other features that might
need site-specific adaptations.

• Provide both an Apache module and a stand-alone
interpreter to use in CGI applications and batch-
processing modules.

In early 2000 we released the first two beta releases. We
will release Webshell 3 final as soon as Apache 2.0 will
be final. Even though there is no strong dependency on
Apache 2.0 we still believe that it will be sensible to
have a matched release. Tcl-based extensions to Apache

2.0 will have a certain advantage to other modules (e.g.,
PHP or Perl) since Tcl’s core is thread-safe and there-
fore, easily deployable in a multi-threaded processing
module of Apache 2.0.1

The following section will now shortly give a general
overview on building Web applications and give a few
examples of corresponding Tcl-based environments.

3 Web application basics

3.1 Approaches

In the last few years it has become a standard paradigm
to develop applications that use a Web browser as user
interface, both for the Internet and also for internal ap-
plications on an Intranet. Many techniques, commercial
and open-source tools have been developed to support
the development of such applications that provide dy-
namic Web content. These tools typically fall into the
following categories:

Microscripting or server-side includes

This technique is available with most HTTP
servers. It is based on a proprietary extension to
HTML, which is parsed by the server whenever the
corresponding document is requested. These exten-
sions contain directives for conditional text and text
substitution. This technique is only suitable for ap-
plications where text substitution is possible, that
is, for simple replacements in the document. It also
strongly depends on the server software used, as
there is no widely accepted standard for the syn-
tax. Such template-based approaches include Mi-
crosoft’s Active Server Pages (ASP), Java Server
Pages (JSP), and PHP. Tcl implementations include
AOL’s Web Server, NeoSoft’s NeoWebScript, or
Vignette’s StoryServer.

Custom HTTP servers

Most off-the-shelf HTTP-servers serve static con-
tents from a repository, which typically is either a
file system or a database management system. It
might make sense for some applications to manage

1Apache 2.0 does include so-called multi-processing modules
which allow on a platform with threads to use them. This provides
better performance than the fork/exec-model used in earlier genera-
tions.

the HTTP-protocol themselves, i.e., to act as cus-
tom HTTP servers, having the full freedom on how
the results of HTTP requests are returned. This
technique is the most flexible. However, there is
much application overhead introduced in properly
(and efficiently) handling HTTP-requests, that this
method is only sensible for very specific applica-
tions. The Tcl-only Web-Server tclhttpd is such an
example.

CGI

Often dynamic content is managed using the Com-
mon Gateway Interface (CGI). The widespread use
of CGI is basically due to its simplicity. The CGI
specification relies on POSIX-compliant execution
of child processes. Parameter passing happens via
command line arguments, environment variables
and standard I/O. CGI has become the most pop-
ular technique for dynamic content because it is
standardized. For Tcl, Don Libes’ cgi.tcl (see ref-
erences) is the most popular Tcl-only package for
CGI handling.

Embedded handlers and modules

Most current HTTP server software products sup-
port a direct extension through a specific API (e.g.,
NSAPI for Netscape products, ISAPI with Mi-
crosoft Information Server, ”modules” for Apache-
based Products). This method is probably the most
efficient, since there is a tight binding between
server and extension. On the other hand, this so-
lution is dependent on the HTTP server used. Java
servlets can be considered to fall into this category.

All approaches mentioned above do have advantages and
disadvantages. Let’s examine two common trade-offs
that are often debated.

3.2 CGI versus embedded execution

CGI has been very popular since the first available Web-
servers (CERN’s httpd and NCSA httpd) did support it.
The main drawback of CGI is that the Web-server needs
to spawn a new child for every request to handle. This
has several impacts:

• Even on platforms that are based on a frequent-
subprocess-creation paradigm such as Unix, a pro-
cess creation is much more expensive than, for ex-
ample, an in-process function call. That is, CGI is
generally" expensive" .

• In addition to the process-creation costs, a CGI
needs always to reinitialize all application-context
unless potentially dangerous techniques such as
shared-memory are used.

• Limited or slow resources such as database or
mainframe connections with long latencies have to
be managed using complex pool managers since a
CGI application, being a standalone-process, can-
not pass any resources to a follow-up request.

On the other hand, there are also invaluable advantages
of CGI:

• CGI is " industry" -standardized. That is, CGI
application can be easily installed on any HTTP
server supporting CGI (most do).

• CGI is very robust. Since CGI-applications run in a
separate process, its isolation of address-space etc.
prevents malign applications to bring down the en-
tire HTTP server.

• CGI applications have very short lifetimes. This
does not only provide more robustness of the entire
system (resource-leaks don’t impact general stabil-
ity), but also allow quick and immediate reconfigu-
ration.

• CGI applications are often easier to debug and test
because the can be run without a HTTP server.

• Sometimes the same application might need to
work both as CGI and as a standalone application.

Thus, there are situations where a CGI approach is the
better way nonwithstanding the negative performance
impact. The FastCGI protocol is a way to have multiple
requests served by the same instance of an application.
However, the robustness is partially lost (even though
the application cannot bring down the Web server).

3.3 Template-based approaches versus con-
structive rendering

At first glance, template-based approaches such as JSP
or ASP seem to be a very logic and intuitive approach to
provide dynamic content:

• It is a straight-forward idea to replace the static
parts of a document with code that generates the

corresponding dynamic content when the page is
rendered.

• Complex HTML-page-layouts that are (or have
been) necessary to overcome HTML’s limitations
can be developed using standard tools and then
" turned" into an application by adding the dy-
namic parts.

• Application programming merges with content
management.

For simple applications and portal-like integration pages
these are very powerful and useful approaches. How-
ever, with increasing application complexity there are
several drawbacks:

• Some applications might require other document
types than HTML to be returned to the browser,
e.g., images, PDF documents, Java class files, etc.

• The " distributed-transaction" or half-transaction
problem (see below) leads to complicated solutions
with templates.

• The application logic gets spread over many tem-
plates which is problematic from a configuration
management perspective.

• Application logic and its visual appearance are of-
ten tightly coupled.

• In some cases (e.g., PHP) it is difficult to use com-
mon code for both the Web application and other
process in a complex system (e.g., daily batch jobs,
other user interfaces).

Again, it depends mainly on the problem at hand, which
one of these approaches is better suited. In general, the
more complex an application is and the more internal
state it has, the less a template-based approach should
be considered.

The half-transaction problem mentioned above shows a
basic drawback of the" a request corresponds to a page"
assumption of template-based approaches. Consider a
simple order form that has basically two states. In the
first state, a form is displayed that lets the user enter,
say, delivery information. After submitting the form, the
data will be written, say, to a database, and a confirma-
tion page will be displayed. That is, there are basically
two HTML pages that are shown in the browser: the
form and the confirmation page. Now it is common that
the processing of the input data in the form will include

various types of validations (e.g., required input fields)
that might lead to the necessity to redisplay the form,
now with some error messages, preserving the correctly
entered values. That is, there are two state transition pos-
sible as a result of submitting the form: back to the form
or continue to the confirmation page. Based on some ap-
plication logic it might be either necessary to display the
form again or then the confirmation page. The typical
template-based solutions are:

• Either place all possible output into a single tem-
plate and conditionally show only the form part or
the confirmation part.

• Or implement some kind of" internal redirect" that
forwards the request from the confirmation page to
the form page in case of a validation error.

The basic problem herein is that the application logic
as seen on a conceptual level (display form, user en-
ters data, collect input, and show confirmation) does not
match the HTTP transactions which are: display form,
collect input, re-display form, collect input, and show
confirmation. The the steps that usually belong together
in traditional GUI applications (render dialog and collect
user input) are spread over HTPP transactions. In order
to minimize the impact on the application’s complexity
it is therefore often sensible to have a single application
that handles all states and transitions in an application
rather than to spread it over many templates or scripts.

3.4 Where does Webshell fit into that picture?

Webshell does provide the necessary functionality to al-
low multiple application states and their transitions to
be implemented in a simple way within the same ap-
plication object. Typically, the various states and their
corresponding output are constructed using HTML frag-
ments rather than templates, but Webshell does also sup-
port template substitution where it is sensible to use tem-
plates.

Webshell-applications can be used both through the CGI
interface and also an Apache module. Its CGI interface
ensures that Webshell can be employed virtually any-
where, using off-the-shelf web servers. If performance
is key, Webshell can be run as an Apache module. In
this case, the server does not spend time spawning child
processes, and communication between web server and
Webshell directly uses the Apache API, which is consid-
erably faster than in the CGI case. In addition, Webshell

applications can be split into two parts, the command
definition and the command call part, and Apache can
keep the command definition part in memory. This elim-
inates the need to re-read most parts of a Webshell appli-
cation for every HTTP request, and further increases the
responsiveness of the Webshell application. Also, the
necessity of connection-pools for long-latency resources
can be reduced because connection handles and the like
can be kept for multiple requests.

The following section will now describe Webshell’s de-
sign in more detail.

4 Webshell concepts and design

4.1 Sub-components

Webshell is based on a few sub-components. Each mod-
ule manages its own data, and locking mechanisms are
used where needed. These Webshell modules are exten-
sible through plug-ins. This section gives an overview of
the Webshell modules and shortly describes their func-
tion and design.

Request and URL management

Handles input from the HTTP protocol, and session
tracking

Session context management

Session data handling. On the client-side using
Netscape cookies, and on the server-side using vari-
ous storage managers (file system, data base, main-
memory cache)

Output management

Sending data back to the client

Conversion

HTML- and URI-compliant encoding and decoding
of data

Encryption

security by strong encryption

Messages

Message-oriented communication over TCP/IP
(Berkeley) sockets

Logging

Generation, filtering and distribution of log mes-
sages

The Webshell modules are shown in figure 1.

4.1.1 Request and URL management

The Webshell application developer does not need to get
involved with the details of the HTTP protocol or the
parsing of data. Rather, she concentrates on the applica-
tion logic and leaves the rest to Webshell. This module
parses input from the client, e.g. HTML form data2, and
makes it available to Webshell. In addition, it adds state
to the HTTP protocol using the query string or Netscape
cookies.

One of the distinctive features of Webshell is its session
management capability. HTTP as a protocol is usually
stateless (unless the secure variant SSL/TLS is used).
By protocol definition, there is no information which
lives from access to access. This design has many ad-
vantages, like simple client-server application design. If
state is needed, however, it makes application develop-
ment more difficult.

Web-based applications often need to carry information
from one HTTP transaction to the next. As an example,
a user might have a preferred language. Applications for
electronic commerce systems, Internet banking an so on
also need mechanisms to identify and group transactions
into longer transactions which cover more than one sin-
gle HTTP request and its response. In other words, state
needs to be introduced.

Typically, there are three methods in use to identify state:

• Encoding of state information in the URL

• Encoding of state information in hidden form fields

• Using Netscape cookies.

Webshell is designed to use all of these methods. How-
ever, the first is Webshell’s preferred method. The rea-
son to rely mainly on the URL is that both hidden form
fields and cookies have disadvantages:

2Both x-form-urlencoded and multipart/formdata
MIME types are supported

Figure 1: Webshell modules

• Hidden fields are only usable in forms. How-
ever, there are frequently cases where state needs
to be preserved without explicitly requiring forms.
Moreover, the state might be required to be ”book-
markable”

• Firewall setups can filter cookie information from
the HTTP-stream in order to avoid external infor-
mation from entering an organization. Also, the
user can disable cookies, and not all browsers sup-
port cookies.

URL encoding, on the other hand, has the disadvantage
that it produces somewhat long URLs. Experience has
shown that the advantages more than compensate for this
drawback.

4.1.2 Session context management

We have described above why web applications need
state information. Often, more information is needed
than simply preferences. In these cases, Webshell relies
on its session management module.

The session management module handles session data,
which can be stored on the client side using Netscape
cookies, or on the server side using the file system, a data
base management system (DBMS), or any other stor-
age manager. The module provides a uniform interface
to access the session context regardless of the storage
used. It is implemented in Tcl and makes extensive use
of namespaces, which makes it easily extensible while
ensuring a storage-independent API for the application
developer.

4.1.3 Output management

Webshell provides a set of commands to format HTTP-
compliant output to be sent back to the client. Web-
shell manages response objects which direct output to
a Tcl channel or a Tcl variable for buffering purposes.
The technique of buffering output is typically used to
prepend additional information to the output after the
data has been processed. For example, one would like
a table of contents to a text document.

Again, this module has been designed with the philoso-
phy in mind that the application developer does not need
to care about the details of the HTTP protocol. As an
example, he does not track whether the MIME headers
have been sent or not. Webshell takes care of that be-
cause the response objects maintain state.

If control over the HTTP output is needed, the configura-
tion facility of the output management module gives full
control over the output. Of course, the output module is
fully configurable, as are all Webshell modules.

4.1.4 Conversion

The conversion module makes sure that your data is
properly formatted, converting umlauts to their proper
HTML entities or their URI encoded equivalent, for ex-
ample. Like every Webshell module, this module man-
ages its data on its own. In order to ensure thread
safety, no Webshell module maintains global or static
variables. Such variables would be shared across mul-
tiple Tcl interpreters and cause conflicts. Each time
an interpreter loads Webshell and thus this module, the
module-specific data like the look-up tables for the con-
versions will be set up, and destroyed again when the

interpreter is deleted. The disadvantage of this design,
the duplication of data in the memory of one process,
is compensated by the long-term stability of the process
resulting from clean memory management.

4.1.5 Security by encryption

The proper handling of sensitive data is crucial for bank-
ing or E-commerce applications. Three aspects are im-
portant: Data transfer, data storage, and session hijack-
ing. The first of these aspects, data transfer, is not Web-
shell’s task. Webshell assumes that data transfer is se-
cured whenever needed, for example by means of SSL,
and Webshell deliberately chooses not to provide any ad-
ditional functionality here.

Handling of sensitive data, on the other hand, is the task
of Webshell and the Webshell application. This is why
Webshell comes with a strong encryption sub-system to
store data securely. By default, Webshell encrypts the
state information in every URL it generates. The level
of security is chosen by the application developer. She
selects both the encryption method and the encryption
key. For highly sensitive data, the application developer
might not even know the pass-phrase to decrypt data
from the productive environment.

Webshell relies on well-known and well-tested encryp-
tion methods, which are made available to Webshell via
plug-ins. Currently, there are plug-Ins available for the
IDEA and the blowfish encryption methods, as well as
for a simple encryption method for day-to-day use.

Webshell’s standard encryption plug-in protects data
with a checksum to prevent cipher tampering. For de-
cryption, Webshells encryption sub-system uses an auto-
detection system to determine the encryption method.

Note that Webshell provides the framework to handle
sensitive data properly. The level of security, however, is
determined by the developer of a Webshell application.

4.1.6 Messages on streams

This Webshell module implements a simple platform-
independent protocol to facilitate message-based com-
munication over Tcl channels. Particularly, it is used for
communication over TCP/IP connections.

4.1.7 Logging facility

Like all service applications, Web-applications need a
versatile logging mechanism to report errors and state.
In fact, Webshell itself makes heavy use of the logging
facility. Logging must be easy to use, fast, and exten-
sible. Typically, Webshell applications handle many re-
quests per second, and the logging facility has been de-
signed with this kind of load in mind.

The Webshell logging module manages a list of filters
and a list of destinations. Each log message comes with
an " address" consisting of a tag and a level, which is
compared against two filters before the message is de-
livered to its destination. First, an overall filter deter-
mines whether or not Webshell needs to process the mes-
sage. Then, a second, per-destination filter determines
whether or not the message has to be sent to the log des-
tination.

The Webshell logging module is fully extensible through
plug-ins. Out-of-the-box, Webshell comes with plug-ins
to log to files,syslog , Tcl channels, Tcl commands,
and, in the case of modwebsh, to the apache logging fa-
cility. Logging to commands gives the application devel-
oper a simple mechanism to extend the logging module
by writing Tcl commands.

4.2 Hello, world!

The following example demonstrates a very simple
Webshell script which produces the simple message
Hello, world

web::put "Hello, world!\n"

This script can be used as is as a CGI application. Web-
shell takes care of MIME-headers and other details of
the HTTP protocol.

4.3 HTML output

Webshell intentionally contains no support for HTML
rendering other than built-in translation functions for
HTML entities. Therefore, Webshell can be used for
non-HTML output as well. Typically, an application
contains a set of abstractions on top of HTML that an
application developer uses. For example, a generic page
of an application might be defined as:

proc page {title code} {
web::put "<html><head><title>"
web::put $title
web::put "</title></head>"
web::put "<body><h1>$title<h1>\n"
uplevel $code
web::put "</body></html>"

}

And then used as:

page "My page" {
if {$foo==42} {

web::putxfile helppage.html
} else {

showForm
}

}

4.4 CGI and Apache module

Webshell applications can be run both as CGI-
applications and within the Webshell-Apache module.
Both environments are transparent to the developer to
a large degree. That is, all relevant information (e.g.,
HTTP headers, input and output streams, etc.) are pro-
vided to the application through the same interface, in-
dependent if CGI or the Apache module is used.

In the case of the Apache module, however, an appli-
cation can serve more than a single request. For that
purpose, the Webshell Apache module maintains a pool
of interpreters that can be reused for many requests. De-
pending on the configuration, the interpreters might be
shared among various applications (e.g., if it is used in a
micro-scripting fashion) or reserved to individual appli-
cations. For every interpreter, aninitializer andfinalizer
script can be provided which can be used to load neces-
sary code and handle cleanup.

The Apache module has initially be designed for use
in Apache 2.0 only. Tcl’s thread-safety since version
8.1 makes Tcl an ideal candidate for Apache 2.0 mod-
ules. However, the release of Apache 2.0 has been de-
layed considerably, so that the first two beta releases of
mod websh (Webshell 3.0) were built against Apache
1.3.x.

4.5 Security issues

Web-applications are subject to security issues as are all
networked applications. Furthermore, these applications
are often deployed in the Internet, making the security
issues even more important. In the context of Webshell
there are four different relevant security topics discussed
here:

• Can Webshell applications be used to gain unautho-
rized access to a computer?

• What levels of stability do these applications show,
i.e., do Webshell applications often fail?

• How does Webshell manage user authentication
and user authorization?

• How is sensitive data handled?

Webshell does not offer any direct solution to these prob-
lems. Rather, Webshell is designed to avoid problems
(intrusion, stability) and allow simple inclusion of vari-
ous authentication and data encryption models.

The problem of gaining unauthorized access is too im-
portant to be solved by the tool used for application de-
velopment. Therefore, the design of Webshell assumes
that the surrounding system architecture, i.e., Web server
and Firewall handle these issues. This means, that the
Web server is responsible to execute CGI applications
with suitable low privileges, in Unix environments typi-
cally by setting the effective UID to an unprivileged user
and executing the CGI-application and/or Web-server in
a chroot-environment.

However, a Webshell-developer can introduce security
holes. The flexibility of Webshell clearly allows danger-
ous things to be programmed. Therefore, security issues
have to be checked with every application.

The stability issue has rather different characteristics
than the intrusion problems, but it is nonetheless very
important. Unstable applications typically ”get touched”
very often, leading to generally less secure systems.
Also, crashing applications can impair a system’s stabil-
ity if the applications take unexpected execution paths.
The design of Webshell is lead by the idea to pro-
vide a simple, flexible and easy-to-understand frame-
work. Compared to other products, Webshell deliber-
ately prefers transparency over high integration and au-
tomation. This simplicity and flexibility, somehow sim-
ilar to the Unix model, leads to a high stability of the

overall system. At the time of this writing, Webshell has
been in production for almost four years, without any
major stability problems so far.

User authentication is a third security domain important
in many Web-based applications. The design of Web-
shell deliberately does not include any specific method
for user authentication. The reason for this decision is
that the specific authentication method needed largely
depends on the context of the application. Some applica-
tions might authenticate users using a host system, oth-
ers need specific one-time-password schemes, and some
applications might even rely on authentication schemes
provided by Web-servers and -browsers. The extensibil-
ity of Webshell allows various authentication schemes to
be adopted.

Finally, the importance of the secure handling of sen-
sitive data is becoming more and more recognized.
Here, Webshell provides a extensible encryption module
which allows one to easily encrypt data before storing,
and to decrypt the data after reading. For example, a
simple encryption is used by default for the query string
generation, which might contain sensible information.
This plug-in uses checksums to ensure the full transmis-
sion of encrypted text and time stamps in order to ensure
unique data. The encryption sub-system of Webshell is
easily extensible by plug-ins which can be loaded when
needed.

5 Conclusions

The Webshell application framework has proved its ef-
ficiency and robustness in many real-world applications,
ranging from stock quote display systems with many
million transactions per day to various E-commerce ap-
plications with end-to-end integration. With the release
of the software as Open Source, we would like to en-
courage other developers to use it in their web appli-
cations and to help with the further development of the
framework. It is also thought as a contribution to thank
many authors of Open Source software for their ex-
cellent products that are used in many, including our,
projects.

6 References

1. Webshell<http://websh.com>

2. AOLserver<http://www.aolserver.com>

3. moddtcl Apache plugin<http://comanche.
com.dtu.dk/dave/>

4. Welch, Brent. The TclHttpd Web Server. 81–95.
Proceedings of the 7th Tcl/Tk Conference. Austin,
TX, February 14-18, 2000.

5. Welch, Brent, and Thomas, Michael.The Tcl Ex-
tension Architecture. 151-161. Proceedings of the
7th Tcl/Tk Conference. Austin, TX, February 14–
18, 2000.

6. cgi.tcl <http://expect.nist.gov/cgi.
tcl>

A Commands

This appendix lists the main commands of Webshell.
For a complete overview, refer to theQuick Reference
<http://websh.com/quickref.html> .

A.1 configuration

web::config

Webshell configuration for encryption, file upload
file size limit and the like

A.2 command dispatching and session man-
agement

web::command

register code for later execution with web::dispatch

web::getcommand

retrieve registered code

web::cmdurl

create a URL which links back to the application

web::cmdurlcfg

configuration of URL generation

web::dispatch

call registered code depending on request

A.3 request data handling

web::request

access request specific information like
HTTP REFERER

web::param

access parameters from the query string

web::formvar

access variables from the HTML form

A.4 response data handling

web::response

manage Webshell response objects

web::put

send string to response object

web::putx

send string to response object, while executing em-
bedded code

web::putxfile

web::putx content of a file

A.5 logging

web::logdest

manage log destinations

web::logfilter

manage log filters (only messages passing this filter
will be written to a destination)

web::log

issue a log message

A.6 context handling

web::context

setup command to manage information (memory-
based)

web::filecontext

setup command to manage persistent information
(file-based)

web::cookiecontext

setup command to manage persistent information
(cookie-based)

web::filecounter

setup command to generate sequence numbers

A.7 file handling and file I/O

web::include

source/load file

web::readfile

read file, store in variable

web::lockfile

file locking using flock()

web::unlockfile

file locking using flock()

A.8 data encryption

web::encrypt

encrypt data

web::decrypt

decrypt data

A.9 uri-/html- en-/decoding

web::htmlify

translate data to HTML

web::dehtmlify

remove HTML tags from data

web::uriencode

convert data to URI format

web::uridecode

convert data from URI format

A.10 inter-process/-system communication

web::send

send data to socket in network byte-order

web::recv

recieve data from socket

web::msgflag

test for flags in web::send/web::recieve protocol

A.11 Apache module specific commands

web::initializer

register code to be executed when modwebsh
loads this application for the first time

web::finalizer

register code to be executed when modwebsh
delets this application

web::maineval

execute code in the main interpreter of modwebsh

web::interppool

set/get properties like lifetime and maximal idle-
time of modwebsh interpreters

A.12 misc commands

web::match

check for existence of element in list

web::tempfile

return name of temporary file

web::copyright

return version and copyright information

B Requirements

• Tcl 8.2.2 or higher

• For use as a web application, a web server support-
ing CGI is needed.

• The Webshell module for Apache 2 requires
Apache 2.

• The Webshell module for Apache 1.3 requires
Apache 1.3.x.

